【题目】如图,在平面直角坐标系上有点 ,点 第一次跳动至带你,第二次点跳动至带你,第三次点跳动至带你,第四次点跳动至带你,…… 依此规律跳动下去,则点与点之间的距离是( )
A. B. C. D.
【答案】C
【解析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
观察发现, 第1次跳动至点的坐标是 ,第3次跳动至点的坐标是,第5次跳动至点的坐标是,第7次跳动至点的坐标是,…… 横坐标是跳动次数与1之和的一半相反数,纵坐标是跳动次数与1之和的一半,实际上纵坐标是横坐标的相反数;第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…横坐标是跳动次数的一半加上1,纵坐标是次数的一半
故第2017次跳动至点的坐标是(-1009,1009).
故第2018次跳动至点的坐标是(1010,1009).
∴1010-(-1009)=2019.故选C.
科目:初中数学 来源: 题型:
【题目】地表以下岩层的温度T(℃)随着所处的深度h(km)的变化而变化,T与h之间在一定范围内近似地成一次函数关系.
(1)根据下表,求T(℃)与h(km)之间的函数关系式;
温度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)当岩层温度达到1770℃时,岩层所处的深度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)榕树和香樟树的单价各是多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算该校本次购买榕树和香樟树共有哪几种方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=2AB,点E,F分别是AD,BC的中点,连接AF与BE,CE与DF分别交于点M,N两点,则四边形EMFN是( )
A. 正方形 B. 菱形 C. 矩形 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.
(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明: ∠E+∠F=90°.
(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)
解:(1) ADB∥C,理由如下:
∵∠ADE+∠BCF=180°(已知) ,
∠ADE+∠ADF=180°(平角的定义),
∴∠ADF__________ (______________________),
∴AD∥BC (__________________________);
(2)AB与EF的位置关系是:互相平行.
∵BE平分∠ABC(已知),
∴A∠BC=2∠ABE(角平分线定义).
又∵∠ABC=2∠E(已知),
∴2∠E=2∠ABE (____________________),
∴∠E=∠ABE(____________________),
∴_____________ (________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是( )
A.
B.1
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com