【题目】如图,已知抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式: ;
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+4;(2)C′(2,4),A′(0,0).(3)见解析
【解析】
试题分析:(1)先求得B点的坐标,然后根据待定系数法交点抛物线的解析式;
(2)根据平移性质及抛物线的对称性,求出A′、C′的坐标;
(3)以A、C、E、F为顶点的四边形为平行四边形,可能存在3种满足条件的情形,需要分类讨论,避免漏解.
解:(1)∵A(﹣2,0),对称轴为直线x=1.
∴B(4,0),
把A(﹣2,0),B(4,0)代入抛物线的表达式为:
,
解得:,
∴抛物线的解析式为:y=﹣x2+x+4;
(2)由抛物线y=﹣x2+x+4可知C(0,4),
∵抛物线的对称轴为直线x=1,根据对称性,
∴C′(2,4),
∴A′(0,0).
(3)存在.
设F(x,﹣x2+x+4).
以A、C、E、F为顶点的四边形为平行四边形,
①若AC为平行四边形的边,如答图1﹣1所示,则EF∥AC且EF=AC.
过点F1作F1D⊥x轴于点D,则易证Rt△AOC≌Rt△E1DF1,
∴DE1=2,DF1=4.
∴﹣x2+x+4=﹣4,
解得:x1=1+,x2=1﹣.
∴F1(1+,﹣4),F2(1﹣,﹣4);
∴E1(3+,0),E2(3﹣,0).
②若AC为平行四边形的对角线,如答图1﹣2所示.
∵点E3在x轴上,∴CF3∥x轴,
∴点C为点A关于x=1的对称点,
∴F3(2,4),CF3=2.
∴AE3=2,
∴E3(﹣4,0),
综上所述,存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形;
点E、F的坐标为:E1(3+,0),F1(1+,﹣4);E2(3﹣,0),F2(1﹣,﹣4);E3(﹣4,0),F3(2,4).
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,在以O为原点的直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,若反比例函数(k>0,x>0)的图象与AB相交于点D,与BC相交于点E,且BE=CE.
(1)求证:BD=AD;
(2)若四边形ODBE的面积是9,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线y=x2-2016x+2017与x轴的两个交点为(m,0)与(n,0),则(m2-2017m+2017)(n2-2017n+2017)的值是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com