【题目】如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )
A.0个B.1个C.2个D.3个
【答案】D
【解析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.
解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),
故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;
故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE+PE=PO,
∴PE+PF=PO,
故③正确;
∴正确的有3个,
故选:D
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:①△ABG≌△AFG; ②求GC的长;
(2)求△FGC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,D在线段AB上,△PCD是等边三角形.
(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?
(2)当△ACP∽△PDB时,求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…这样的分式是假分式;像 ,,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如: ’
.
(1)将分式化为整式与真分式的和的形式;
(2)如果分式的值为整数,求x的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
∴≥,只有当a=b时,等号成立.
结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.
根据上述内容,填空:若m>0,只有当m= 时,有最小值,最小值为 .
探索应用:如图,已知,,为双曲线(x>0)上的任意一点,过点作⊥x轴于点,⊥y轴于点D.求四边形面积的最小值,并说明此时四边形的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5-3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.
请根据绝对值的意义并结合数轴解答下列问题:
(1)数轴上表示2和3的两点之间的距离是 ;数轴上表示数a的点与表示﹣2的点之间的距离表示为 ;
(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是 ;
(3)数轴上有一个点表示数a,则|a+1|+|a-3|+|a+8|的最小值为 ;
(4)a、b、c、d在数轴上的位置如下图所示,若|a-d|=12,|b-d|=7,|a-c|=9,则|b-c|等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于受到手机更新换代的影响,某手机店经销型号手机四月售价比三月每台降价500元.如果卖出相同数量的型号手机,那么三月销售额为9万元,四月销售额只有8万元.
(1)三月型号手机每台售价为多少元?
(2)为了提高利润,该店计划五月购进型号手机销售,已知型号每台进价为3500元,型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)该店计划六月对型号的尾货进行销售,决定在四月售价基础上每售出一台型号手机再返还顾客现金元,而型号按销售价4400元销售,如要使(2)中所有方案获利相同,应取何值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com