【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
【答案】(1)y=﹣,y=﹣2x+12(2)S△CDE=140;(3)x≥10,或﹣4≤x<0
【解析】
(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式;
(2)联立解析式,可求交点坐标;
(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.
(1)由已知,OA=6,OB=12,OD=4
∵CD⊥x轴
∴OB∥CD
∴△ABO∽△ACD
∴
∴
∴CD=20
∴点C坐标为(﹣4,20)
∴n=xy=﹣80
∴反比例函数解析式为:y=﹣
把点A(6,0),B(0,12)代入y=kx+b得:
解得:
∴一次函数解析式为:y=﹣2x+12
(2)当﹣=﹣2x+12时,解得
x1=10,x2=﹣4
当x=10时,y=﹣8
∴点E坐标为(10,﹣8)
∴S△CDE=S△CDA+S△EDA=
(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象
∴由图象得,x≥10,或﹣4≤x<0
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,∠C和∠D的平分线交于M,DM的延长线交AD于E,试猜想:
(1)CM与DE的位置关系?
(2)M在DE的什么位置上?并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,等边△ABC内接于⊙O,点P是⌒AB上的任意一点,连结PA,PB,PC.点D是PC上一点,连结DB.
(1) 若PD=PB,求∠PBD的度数;
(2)在(1)的条件下,小丽探究的值,她认为只要弄清PA+PB与PC的关系即可,她的思路可以用以下框图表示:
根据小丽的思路,请你完整地书写本题的探究过程,并求出的值.
(3)如图2,把条件“等边△ABC”改为“正方形ABCD”,其余条件不变,判断是定值吗?若是,请求出这个值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是( )
A. ①②B. ②③C. ③④D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知开口向上的抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于C点,∠ACB不小于90°.
(1)求点C的坐标(用含a的代数式表示);
(2)求系数a的取值范围;
(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.
(4)设E(-,0),当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的解析式;
(2)求△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为___;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,
(1)求证:四边形AECF为平行四边形;
(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;
(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com