精英家教网 > 初中数学 > 题目详情
10、如图,△ABC中,∠BAC=90°,AD⊥BC,请写出其中的一对相似三角形
△BAD∽△ACD
分析:本题主要考查直角三角形的一条性质:直角三角形斜边上的高线,把这个三角形分成的两个三角形与原三角形相似.
解答:解:
∵∠B+∠C=90°,∠B+∠BAD=90°,
∴∠C=∠BAD,
又∵∠BAC=∠BDA=∠CDA=90°,
∴△BAD∽△ACD∽△BCA.
点评:本题利用了有两组对应角相等的两三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案