精英家教网 > 初中数学 > 题目详情
13.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.
(1)若AD=1,求点F的坐标.
(2)若反比例函数y=$\frac{k}{x}$的图象经过点E,G两点,求k值.

分析 (1)过F作FN垂直于x轴,交CB延长线于点M,证得ABD≌△BMF,由全等三角形的性质得到BM=AB=2,FM=AD=1,即可求得结果;
(2)利用AAS得到三角形ABD与三角形BMF全等,利用全等三角形对应边相等得到AD=FM,进而表示出F坐标,根据B为CM中点,得出G的CF中点,表示出G坐标,进而得出E坐标,把G与E代入反比例解析式求出a的值,确定出E坐标,代入反比例解析式求出k的值即可.

解答 解:(1)过F作FN⊥x轴,交CB的延长线于点M,
∵∠FBM+∠MBD=90°∠MBD+∠ABD=90°,
∴∠FBM=∠ABD,
∵四边形OABC是正方形,
∴BF=BD,
在△ABD和△BMF中,$\left\{\begin{array}{l}{∠BAD=∠BMF}\\{∠ABD=∠MFB}\\{BD=BF}\end{array}\right.$,
∴ABD≌△BMF,
∴BM=AB=2,FM=AD=1,
∴F(4,3);

(2)过E作EH⊥x轴,交x轴于点H,
∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,
∴∠FBM=∠ABD,
∵四边形BDEF为正方形,
∴BF=BD,
在△ABD和△BMF中,
$\left\{\begin{array}{l}{∠BAD=∠BMF}\\{∠ABD=MFB}\\{BD=BF}\end{array}\right.$,
∴△ABD≌△BMF(AAS),
设AD=FM=a,则有F(4,2+a),C(0,2),
由三角形中位线可得G为CF的中点,
∴G(2,2+$\frac{1}{2}$a),
同理得到△DHE≌△BAD,
∴EH=AD=a,OH=OA+AD+DH=4+a,
∴E(4+a,a),
∴2(2+$\frac{1}{2}$a)=a(4+a),即a2+3a-4=0,
解得:a=1或a=-4(舍去),
∴E(5,1),
把F代入反比例解析式得:k=5.

点评 此题属于反比例函数综合题,涉及的知识有:正方形的性质,全等三角形的判定与性质,坐标与图形性质,解一元二次方程,以及反比例函数的性质,熟练掌握反比例函数的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:$(\frac{1}{a+2}-\frac{1}{a-2})÷\frac{1}{a-2}$,其中a=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.把下列各数填入相应的大括号里.
29%,-$\frac{1}{9}$,-15,$\frac{2}{15}$,0,6.3,2016,-3.1415,…
整数集:{                   }
负分数集:{                  }
非负整数集:{                   }.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?(  )
A.36B.42C.45D.48

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x-y=b}\\{ax+y=1}\end{array}\right.$有整数解,且点(a,b)落在双曲线$y=-\frac{3}{x}$上的概率是$\frac{3}{20}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t-5t2(0≤t≤4).
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是(2n-1,2n-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,A、B两点在函数y=$\frac{y}{x}$(x>0)的图象上.
(1)求k的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若点(m,n)是第一象限内位于直线AB的图象下方的格点,求这个点在图中阴影部分(不包括边界)内部的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知∠α、∠β.
(1)用量角器画∠AOB,使得∠AOB=∠α+∠β;
(2)在第(1)题的图中,用尺规作∠AOB的平分线OC(不要求写作法,但要保留作图痕迹).

查看答案和解析>>

同步练习册答案