精英家教网 > 初中数学 > 题目详情

Rt△ABC中,∠C=90°,AC=6,BC=8,D为BC上一点,P为AD上一点,且AC=CD,⊙P分别于AB、BC相切,则⊙P的半径为


  1. A.
    1
  2. B.
    2
  3. C.
    2.4
  4. D.
    4.8
A
分析:由勾股定理求出AB=10,连接FP、PE,过P作PM⊥AC于M,根据切线的性质得出矩形CMPF,推出PM=CF,PF=CM,设圆P的半径是r,根据切线的性质和切线长定理、等腰三角形的性质得到DF=FP,AM=PM,BE=BF,根据勾股定理得出AP2=AE2+PE2=AM2+PM2,代入即可得到方程,求出方程的解即可.
解答:解:由勾股定理得:AB==10,
连接FP、PE,过P作PM⊥AC于M,
∵∠C=90°,PF⊥BC,
∴四边形CMPF是矩形,
∴PM=CF,PF=CM,
设圆P的半径是r,
∵AC=CD,∠C=90°,
∴∠ADC=45°,
∵PF⊥BC,
∴∠FPD=45°=∠ADC,
∴DF=FP=r,
同理:AM=PM,
∵圆P切AB于E,切BC于F,
∴BF=BE=BD+DF=8-6+r,
∴AE=10-(8-6+r)=8-r,
由勾股定理得:AP2=AE2+PE2=AM2+PM2
∴(6-r)2+(6-r)2=r2+(8-r)2
解得:r=1,
故选A.
点评:本题主要考查对切线的性质,切线长定理,矩形的性质和判定,等腰三角形的性质和判定,勾股定理,直角三角形的性质,角平分线的定义,解一元一次方程等知识点的理解和掌握,题型较好,难度适中,综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的精英家教网延长线上,且AF=CE.求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,精英家教网点G在边BC上.
(1)求证:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为
 

查看答案和解析>>

同步练习册答案