精英家教网 > 初中数学 > 题目详情
如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD=   
【答案】分析:利用勾股定理列式求出AC,设AD=2x,得到AE=DE=DE1=A1E1=x,然后求出BE1,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得AD的值.
解答:解:∵∠ACB=90°,AB=10,BC=6,
∴AC===8,
设AD=2x,
∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A1,点E的对应点为E1
∴AE=DE=DE1=A1E1=x,
∵DF⊥AB,∠ACB=90°,∠A=∠A,
∴△ABC∽△AFD,
=
=
解得DF=x,
在Rt△DE1F中,E1F===
又∵BE1=AB-AE1=10-3x,△E1FA1∽△E1BF,
=
∴E1F2=A1E1•BE1
即(2=x(10-3x),
解得x=
∴AD的长为2×=
故答案为:
点评:本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角三角形ABC中∠ACB=90°,CD是高,∠A=30°,AB=4.则BD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC的直角边AB=6,以AB为直径画半圆,若阴影部分的面积S1-S2=
π
2
,则BC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在直角三角形ABC的斜边AB上另作直角三角形ABD,并以AB为斜边,若BC=1,AC=m,AD=2,则BD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD与△BCD的周长差为
2
2
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC中,∠C=90°,P,E分别是边AB,BC上的点,D为△ABC外一点,DE⊥BC,DE=EC,BE=2EC,∠BDE=∠PEC,AD∥PE,AC=4,则线段BC的长为
12
12

查看答案和解析>>

同步练习册答案