精英家教网 > 初中数学 > 题目详情
16.在数学上,对于两个正数p和q有三种平均数,即算术平均数A、几何平均数G、调和平均数H,其中$A=\frac{p+q}{2}$,$G=\sqrt{pq}$,而调和平均数H满足$\frac{1}{p}-\frac{1}{H}=\frac{1}{H}-\frac{1}{q}$.我们把A、G、H称为p、q的平均数组.
①若p=2,q=6,则A=4,G=2$\sqrt{3}$,H=3.
②根据上述关系,可以推导出A、G、H三者的等量关系G2=AH.
③现在小明手里有一张卡片,上面标有数字$\frac{32}{5}$,另外在一个不透明的布袋中有三个小球,表面分别标有10,8,1,这三个球除了标的数不同外,其余均相同.若从布袋中任意摸出两个小球,求摸出的两个数字与卡片上数字恰好构成平均数组的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)

分析 (1)将已知条件代入代数式求值即可;
(2)将$A=\frac{p+q}{2}$,$G=\sqrt{pq}$,$\frac{1}{p}-\frac{1}{H}=\frac{1}{H}-\frac{1}{q}$变形后即可确定三者之间的关系;
(3)列树状图将所有等可能的结果列举出来,利用概率公式求解即可.

解答 解:(1)∵p=2,q=6,
∴$A=\frac{p+q}{2}$=$\frac{2+6}{2}$=4,$G=\sqrt{pq}$=$\sqrt{12}$=2$\sqrt{3}$,H=3,
故答案为:4,2$\sqrt{3}$,3;

(2)∵$A=\frac{p+q}{2}$,$G=\sqrt{pq}$,$\frac{1}{p}-\frac{1}{H}=\frac{1}{H}-\frac{1}{q}$,
∴$\frac{2}{H}$=$\frac{p+q}{pq}$,
∴H=$\frac{2pq}{p+q}$=$\frac{{G}^{2}}{A}$,
∴G2=AH;

(3)列树状图如下:

∵一共有6种情况,其中10,8,$\frac{32}{5}$是平均数组,共2种满足条件,
∴P(构成平均数组)=$\frac{2}{6}$=$\frac{1}{3}$.

点评 考查了列表及树状图的方法,解题的关键是根据题意将所有等可能的结果列举出来,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E,BC=$\frac{5}{2}$,CD=$\frac{{\sqrt{5}}}{2}$,则sin∠AEB的值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”.请利用此推论,完成下面的尺规作图.如图,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线.(要求:不写作法,保留作图痕迹,写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:直线y=-$\frac{3}{4}$x+3与x轴y轴分别交于点A、点B,抛物线y=-$\frac{3}{8}$x2+bx+c经过点A和点B.
(1)求抛物线的解析式;
(2)点C(0,2),点P(m,0)是线段OA上的一点(不与O、A重合),过点P作PM垂直x轴,交抛物线于点M,连接BM、AC、AM,设四边形ACBM的面积为S,求S与m的函数关系式(不要求写出自变量的取值范围);
(3)在(2)的条件下,点D是线段OP的中点,连接BD,当S取最大值时,试求直线BD与AC所成的锐角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,在正方形ABCD中,M是边BC中点,E是边AB上的一个动点,MF⊥ME,交射线CD于点F,AB=4,当DF=1时,求点A到直线EF的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.现将背面相同的4张扑克牌背面朝上,洗匀后,从中任意翻开一张是数字4的概率为(  )
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列运算正确的是(  )
A.6a-5a=1B.(a23=a5C.(-2x2y)3=-6x6y3D.3ab2•(-a)=-3a2b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:${2013^0}+{({\frac{1}{2}})^{-2}}+4sin60°-|{-\sqrt{12}}|$.
(2)先化简,再求值:(x+3)2-(x-1)(x+2),其中x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.
(1)求小颖何时追上小华;
(2)求从什么时间开始,小颖到终点的距离不超过16米;
(3)求小颖何时和小华相距5米.

查看答案和解析>>

同步练习册答案