精英家教网 > 初中数学 > 题目详情
精英家教网如图:已知⊙O1和⊙O2相交于A、B两点,P是⊙O1上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O1于点N.
(1)过点A作AE∥CN交⊙O1于点E,求证:PA=PE;
(2)连接PN,若PB=4,BC=2,求PN的长.
分析:(1)连接AB,根据平行线的性质和圆周角定理的推论,得到∠PAE=∠ADC=∠ABC;
再根据圆内接四边形的性质,得到∠ABC=∠E,从而得到∠PAE=∠E,进一步得到PA=PE;
(2)根据两个角对应相等,易证明△PDN∽△PNA,得到PN2=PD•PA,再结合割线定理进一步求解.
解答:精英家教网(1)证明:连接AB.
∵四边形AEPB是⊙O1的内接四边形,
∴∠ABC=∠E.
在⊙O2中,∠ABC=∠ADC,
∴∠ADC=∠E.
又∵AE∥CN,
∴∠ADC=∠PAE.
故∠PAE=∠E.
∴PA=PE.

(2)解:连接AN、PN.
∵四边形ANPB是⊙O1的内接四边形,
∴∠ABC=∠PNA.
由(1)可知,∠PDN=∠ADC=∠ABC.
∴∠PDN=∠PNA.
又∠DPN=∠NPA,
∴△PDN∽△PNA.
∴PN2=PD•PA.
又∵PD•PA=PB•PC,
∴PN=
PB•PC
=
4×(4+2)
=2
6
点评:连接公共弦,是相交两圆常见的辅助线之一.综合运用圆周角定理的推论、圆内接四边形的性质、相似三角形的性质和判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点D,直线DA交⊙O2于点E.试证明:AC=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2相交于A、B两点,DP是⊙O1的切线,切点为P,直线PD交⊙O2于C、Q,交AB的延长线于D.
(1)求证:DP2=DC•DQ;
(2)若QA也是⊙O1的切线,求证:方程x2-2PBx+BC•AB=0有两个相等的实数根;
(3)若点C为PQ的中点,且DP=y,DC=x,求y与x的函数关系式,并精英家教网求S△ADC:S△ACQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2外切于点P,AB是两圆的外公切线,A,B为切点,AP的延精英家教网长线交⊙O1于C点,BP的延长线交⊙O2于D点,直线O1O2交⊙O1于M,交⊙O2于N,与BA的延长线交于点E.
求证:(1)AB2=BC•DA.
(2)线段BC,AD分别是两圆的直径.
(3)PE2=BE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•永嘉县一模)如图,已知⊙O1和⊙O2的半径分别是2cm和3cm,圆心距O1O2是10cm,把⊙O2由图示位置沿直线O1O2向左平移6cm,此时它与⊙O1的位置关系是
相交
相交

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2相交于点A、B,过点A作直线分别交⊙O1、⊙O2于点C、D,过点B作直线分别交⊙O1、⊙O2于点E、F,求证:CE∥DF.

查看答案和解析>>

同步练习册答案