【题目】在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.
【答案】
解(1)EG="CG " EG⊥CG------------------------------------------------------------(2分)
(2)EG="CG " EG⊥CG------------------------------------------------------------(2分)
证明:延长FE交DC延长线于M,连MG
∵∠AEM=90°,∠EBC=90°,∠BCM=90°
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°
又∵BE=EF
∴EF=CM
∵∠EMC=90°,FG=DG
∴MG=FD=FG
∵BC="EM" ,BC=CD
∴EM=CD
∵EF=CM
∴FM=DM
∴∠F=45°
又FG=DG
∵∠CMG=∠EMC=45°
∴∠F=∠GMC
∴△GFE≌△GMC
∴EG="CG" ,∠FGE=∠MGC------------------------------------------------------------------------(2分)
∵∠FMC=90°,MF=MD, FG="DG"
∴MG⊥FD
∴∠FGE+∠EGM=90°
∴∠MGC+∠EGM=90°
即∠EGC=90°
∴EG⊥CG------------------------------------------------------------------------------------------- (2分)
【解析】
试题从图(1)中寻找证明结论的思路:延长FE交DC边于M,连MG.构造出△GFE≌△GMC.易得结论;在图(2)、(3)中借鉴此解法证明.
解:(1)EG=CG,EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,∠F=45°.
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
又∵FG=DG,
∠CMG=∠EMC=45°,
∴∠F=∠GMC.
∵在△GFE与△GMC中,,
∴△GFE≌△GMC(SAS).
∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
科目:初中数学 来源: 题型:
【题目】如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )
A. 10mB. 20mC. 15mD. 22.5m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,,,对角线AC,BD交于点点P从点A出发,沿AD方向匀速运动,速度为;同时,点Q从点D出发,沿DC方向匀速运动,速度为;当一个点停止运动时,另一个点也停止运动连接PO并延长,交BC于点E,过点Q作,交BD于点设运动时间为,解答下列问题:
(1)当t为何值时,是等腰三角形;
(2)设五边形OECQF的面积为,试确定S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
② 设△BDC的面积为S1,△AEC的面积为S2。则S1与S2的数量关系是 。
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想。
(3)拓展探究
已知∠ABC=600,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDC,请直接写出相应的BF的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③当y>0时,x的取值范围是﹣1<x≤3;④当x>0时,y随x增大而增大.⑤a>-c上述五个结论中正确的有_________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生对“第二十届中国哈尔滨冰雪大世界”主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:
(1)本次调查共抽取了多少名学生;
(2)通过计算补全条形图;
(3)若该学校共有名学生,请你估计该学校选择“比较了解”项目的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列四个条件:①AB=BC,②∠ABC=90,③AC=BD,④AC⊥BD.从中选取两个作为补充条件,使□BCD为正方形(如图).现有下列四种选法,其中错误的是 ( )
A. ②③ B. ②④ C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,⊙O是△ABC的外接圆,直线DE是⊙O的切线,点A为切点,DE∥BC;
(1)如图1.求证:AB=AC;
(2)如图2.点P是弧AB上一动点,连接PA、PB,作PF⊥PB,垂足为点P,PF交⊙O于点F, 求证:∠BAC=2∠APF;
(3)如图3.在(2)的条件下,连接PC,PA=,PB=,PC=,求线段PF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com