精英家教网 > 初中数学 > 题目详情
7.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.

分析 (1)由AD∥BC,知∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,所以∠DBC=∠BDF,得BE=DE,即可用AAS证△DCE≌△BFE;
(2)在Rt△BCD中,CD=2,∠ADB=∠DBC=30°,知BC=2$\sqrt{3}$,在Rt△BCD中,CD=2,∠EDC=30°,知CE=$\frac{2\sqrt{3}}{3}$,所以BE=BC-EC=$\frac{4\sqrt{3}}{3}$.

解答 解:(1)∵AD∥BC,
∴∠ADB=∠DBC,
根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,
∴∠DBC=∠BDF,
∴BE=DE,
在△DCE和△BFE中,
$\left\{\begin{array}{l}{∠BEF=∠DEC}\\{∠F=∠C}\\{BE=DE}\end{array}\right.$,
∴△DCE≌△BFE;

(2)在Rt△BCD中,
∵CD=2,∠ADB=∠DBC=30°,
∴BC=2$\sqrt{3}$,
在Rt△ECD中,
∵CD=2,∠EDC=30°,
∴DE=2EC,
∴(2EC)2-EC2=CD2
∴CE=$\frac{2\sqrt{3}}{3}$,
∴BE=BC-EC=$\frac{4\sqrt{3}}{3}$.

点评 本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.若不等式组$\left\{\begin{array}{l}{-2x+4≥0}\\{x>a}\end{array}\right.$(x为未知数)无解,则对二次函数y=ax2-2x+1的图象的下列叙述:
(1)开口向上;(2)与x轴没有交点;(3)顶点在第二象限;(4)当x>-$\frac{1}{2}$时,y随x的增大而增大.
其中正确的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2-2ax+a+3(a>0)的最小值为3,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是-1≤x≤1.
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知二次函数y=ax2的图象经过点(2,1).
(1)求二次函数y=ax2的解析式;
(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.
①当m=$\frac{3}{2}$时(图①),求证:△AOB为直角三角形;
②试判断当m≠$\frac{3}{2}$时(图②),△AOB的形状,并证明;
(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=$\frac{3}{5}$,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知?ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为(  )
A.130°B.150°C.160°D.170°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)
(1)本次调查获取的样本数据的众数是30元;
(2)这次调查获取的样本数据的中位数是50元;
(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为S2=141.7,S2=433.3,则产量稳定,适合推广的品种为(  )
A.甲、乙均可B.C.D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.
(1)填空:∠AOB=45°,用m表示点A′的坐标:A′(m,-m);
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且$\frac{BP}{AP}$=$\frac{1}{3}$时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

查看答案和解析>>

同步练习册答案