15£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚP£¨a£¬b£©ºÍµãQ£¨a£¬b¡ä£©£¬¸ø³öÈç϶¨Ò壺Èôb¡ä=$\left\{\begin{array}{l}{b£¨a¡Ý1£©}\\{-b£¨a£¼1£©}\end{array}\right.$£¬Ôò³ÆµãQΪµãPµÄÏÞ±äµã£®ÀýÈ磺µã£¨2£¬3£©µÄÏÞ±äµãµÄ×ø±êÊÇ£¨2£¬3£©£¬µã£¨-2£¬5£©µÄÏÞ±äµãµÄ×ø±êÊÇ£¨-2£¬-5£©£®
£¨1£©µã£¨$\sqrt{3}$£¬1£©µÄÏÞ±äµãµÄ×ø±êÊÇ£¨$\sqrt{3}$£¬1£©£»
£¨2£©ÅжϵãA£¨-2£¬-1£©¡¢B£¨-1£¬2£©ÖУ¬ÄÄÒ»¸öµãÊǺ¯Êýy=$\frac{2}{x}$ͼÏóÉÏijһ¸öµãµÄÏÞ±äµã£¿²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôµãP£¨a£¬b£©ÔÚº¯Êýy=-x+3µÄͼÏóÉÏ£¬ÆäÏÞ±äµãQ£¨a£¬b¡ä£©µÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§ÊÇ-6¡Üb¡ä¡Ü-3£¬ÇóaµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝÏÞ±äµãµÄ¶¨Òå¼´¿ÉÖ±½ÓÇó½â£»
£¨2£©ÇóµÃAºÍBµÄÏÞ±äµã£¬È»ºóÅжÏÏÞ±äµãÊÇ·ñÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉϼ´¿É£»
£¨3£©·Ö³Éa¡Ý1ºÍa£¼1Á½ÖÖÇé¿ö£¬È»ºó¸ù¾Ý-6¡Üb¡ä¡Ü-3£¬µÃµ½¹ØÓÚaµÄ²»µÈʽ£¬´Ó¶øÇóµÃ£®

½â´ð ½â£º£¨1£©µã£¨$\sqrt{3}$£¬1£©µÄÏÞ±äµãµÄ×ø±êÊÇ£¨$\sqrt{3}$£¬1£©£®
´ð°¸ÊÇ£º£¨$\sqrt{3}$£¬1£©£»
£¨2£©A£¨-2£¬-1£©µÄÏÞ±äµãÊÇ£¨-2£¬1£©¡¢B£¨-1£¬2£©µÄÏÞ±äµãÊÇ£¨-1£¬-2£©£®
µã£¨-2£¬1£©²»ÔÚº¯Êýy=$\frac{2}{x}$ÉÏ£¬Ôò£¨-2£¬-1£©²»ÊÇy=$\frac{2}{x}$ͼÏóÉÏijµãµÄÏÞ±äµã£»
£¨-1£¬-2£©ÔÚy=$\frac{2}{x}$µÄͼÏóÉÏ£¬Ôò£¨-1£¬2£©ÊÇy=$\frac{2}{x}$ͼÏóÉÏijµãµÄÏÞ±äµã£»
£¨3£©µ±a¡Ý1ʱ£¬b=-a+3£¬Ôò-6¡Ü-a+3¡Ü-3£¬
½âµÃ£º6¡Üa¡Ü9£»
µ±a£¼1ʱ£¬b=a-3£¬Ôò-6¡Üa-3¡Ü-3£¬
½âµÃ£º-3¡Üa¡Ü0£®
¹ÊaµÄ·¶Î§ÊÇ£º-3¡Üa¡Ü0»ò6¡Üa¡Ü9£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÏóÉϵĵãÓë×ø±êµÄ¹Øϵ£¬ÕýÈ·¶Á¶®ÌâÒ⣬Àí½âÌâÄ¿ÖеÄÏÞ±äµãµÄ¶¨ÒåÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ¢Ù$\left\{\begin{array}{l}{x=0}\\{y=\frac{1}{2}}\end{array}\right.$¢Ú$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ÖУ¬ÊÇ·½³Ìy=2x-3µÄ½âµÄΪ¢Ú£¨ÌîÐòºÅ£¬ÏÂͬ£©£¬ÊÇ·½³Ì3x-2y=-1µÄ½âµÄΪ¢Ù£»ÊÇ·½³Ì×é$\left\{\begin{array}{l}{y=2x-3}\\{3x+2y=8}\end{array}\right.$µÄ½âµÄΪ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{3x+5y=k+2}\\{2x+3y=k}\end{array}\right.$ÖеÄxÓëyµÄ²îµÈÓÚ2£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¶ÔÓÚʵÊýx£¬Èô·½³Ìx2-3x-3=£¨x2-x-2£©0£¬ÔòxµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔĶÁÀí½â£º
Ìá³öÎÊÌ⣺Èçͼ1£¬ÔÚËıßÐÎABCDÖУ¬PÊÇAD±ßÉÏÈÎÒâÒ»µã£¬¡÷PBCÓë¡÷ABCºÍ¡÷DBCµÄÃæ»ýÖ®¼äÓÐʲô¹Øϵ£¿Ì½¾¿·¢ÏÖ£ºÎªÁ˽â¾öÕâ¸öÎÊÌ⣬ÎÒÃÇ¿ÉÒÔÏÈ´ÓһЩ¼òµ¥µÄ¡¢ÌØÊâµÄÇéÐÎÈëÊÖ£º
µ±AP=$\frac{1}{2}$ADʱ£¨Èçͼ2£©£º
¡ßAP=$\frac{1}{2}$AD£¬¡÷ABPºÍ¡÷ABDµÄ¸ßÏàµÈ£¬
¡àS¡÷ABP=$\frac{1}{2}$S¡÷ABD
¡ßPD=AD-AP=$\frac{1}{2}$AD£¬¡÷CDPºÍ¡÷CDAµÄ¸ßÏàµÈ
¡àS¡÷CDP=$\frac{1}{2}$S¡÷CDA
¡àS¡÷PBC=SËıßÐÎABCD-S¡÷ABP-S¡÷CDP=SËıßÐÎABCD-$\frac{1}{2}$S¡÷ABD-$\frac{1}{2}$S¡÷CDA
=SËıßÐÎABCD-$\frac{1}{2}$ £¨SËıßÐÎABCD-S¡÷DBC£©-$\frac{1}{2}$ £¨SËıßÐÎABCD-S¡÷ABC£©=$\frac{1}{2}$S¡÷DBC+$\frac{1}{2}$S¡÷ABC
£¨1£©µ±AP=$\frac{1}{3}$ADʱ£¬Ì½ÇóS¡÷PBCÓëS¡÷ABCºÍS¡÷DBCÖ®¼äµÄ¹Øϵʽ²¢Ö¤Ã÷£»
£¨2£©µ±AP=$\frac{1}{6}$ADʱ£¬S¡÷PBCÓëS¡÷ABCºÍS¡÷DBCÖ®¼äµÄ¹ØϵʽΪ£ºS¡÷PBC=$\frac{1}{6}$S¡÷DBC+$\frac{5}{6}$S¡÷ABC£»
£¨3£©Ò»°ãµØ£¬µ±AP=$\frac{1}{n}$AD£¨n±íʾÕýÕûÊý£©Ê±£¬Ì½ÇóS¡÷PBCÓëS¡÷ABCºÍS¡÷DBCÖ®¼äµÄ¹ØϵΪ£ºS¡÷PBC=$\frac{1}{n}$S¡÷DBC+$\frac{n-1}{n}$S¡÷ABC£»
£¨4£©µ±AP=$\frac{b}{a}$AD£¨0¡Ü$\frac{b}{a}$¡Ü1£©Ê±£¬S¡÷PBCÓëS¡÷ABCºÍS¡÷DBCÖ®¼äµÄ¹ØϵʽΪ£ºS¡÷PBC=$\frac{b}{a}$S¡÷DBC+$\frac{a-b}{a}$S¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{a+b=-3}\\{b+c=2}\\{a+c=-9}\end{array}\right.$£¬Ôòa+b+cµÄֵΪ£¨¡¡¡¡£©
A£®6B£®-6C£®5D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô²»µÈʽ×é$\left\{\begin{array}{l}{x-a£¾2}\\{b-2x£¾0}\end{array}\right.$µÄ½â¼¯ÊÇ-1£¼x£¼1£¬Ôò£¨a+b£©2014µÈÓÚ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èô¹ØÓÚxµÄ·½³Ìkx2+x+1=0ÓÐʵ¸ù£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª·½³Ì3x2-x-3=0µÄÁ½¸ùΪx1ºÍx2£¬²»½â·½³ÌÇóÏÂÁи÷ʽµÄÖµ
£¨1£©x${\;}_{1}^{2}$+x${\;}_{2}^{2}$£»
£¨2£©|x1-x2|£»
£¨3£©x${\;}_{1}^{3}$+x${\;}_{2}^{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸