分析 由矩形的性质得出OC=OB=OD,得出∠OBC=∠OCB,由已知条件得出OE=DE,∠BEC=90°,由线段垂直平分线的性质得出OC=CD,得出△OCD为等边三角形,因此∠OCD=60°,由三角形的外角性质得出∠EBC=30°,由含30°角的直角三角形的性质即可得出CE的长.
解答 解:∵四边形ABCD是矩形,
∴OC=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OC=OB=OD,
∴∠OBC=∠OCB,
∵CE⊥BD,BE=3ED,
∴OE=DE,∠BEC=90°,
∴OC=CD,
∴OC=OD=CD,
∴△OCD为等边三角形,
∴∠OCD=60°,
∴∠EBC=30°,
∴CE=$\frac{1}{2}$BC=$\frac{1}{2}$×12=6.
点评 本题考查了矩形的性质、线段垂直平分线的性质、含30°角的直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
第一列 | 第二列 | 第三列 | 第四列 | ||
第一行 | 0 | 2 | 4 | 6 | … |
第二行 | 2 | 4 | 6 | 8 | … |
第三行 | 4 | 6 | 8 | 10 | … |
第四行 | 6 | 8 | 10 | 12 | … |
… | … | … | … | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com