精英家教网 > 初中数学 > 题目详情
7.若点P(2a-8,2-a)在第三象限内,且a为整数,则a的值是(  )
A.1B.2C.3D.4

分析 点在第三象限内,那么横坐标小于0,纵坐标小于0,可得到一个关于a的不等式组,求解即可.

解答 解:∵点P(2a-8,2-a)在第三象限内,
∴$\left\{\begin{array}{l}{2a-8<0}\\{2-a<0}\end{array}\right.$,
解得:2<a<4,
∵a为整数,
∴a的值为:3.
故选:C.

点评 本题考查了点的坐标和一元一次不等式组的整数解.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(Ⅰ)若△PCD是等腰三角形时,求AP的长;
(Ⅱ)若AP=$\sqrt{2}$,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.
(1)若当t的值为m时,PP′恰好经过点A,求m的值.
(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)
(3)是否存在某一时刻t,使PQ平分角∠P′BC?存在,求相应的t值,不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.
最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:
品种
项目
产量(斤/每棚)销售价(元/每斤)成本(元/每棚)
香瓜 2000 12 8000
甜瓜 4500 3 5000
现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
根据以上提供的信息,请你解答下列问题:
(1)求出y与x之间的函数关系式;
(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读下列材料:
已知实数x,y满足(x2+y2+1)(x2+y2-1)=63,试求x2+y2的值.
解:设x2+y2=a,则原方程变为(a+1)(a-1)=63,整理得a2-1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.
根据阅读材料内容,解决下列问题:
(1)已知实数x,y满足(2x+2y+3)(2x+2y-3)=27,求x+y的值.
(2)填空:
①分解因式:(x2+4x+3)(x2+4x+5)+1=(x+2)4
②已知关于x,y的方程组$\left\{\begin{array}{l}{{a}_{1}x{+b}_{1}y{=c}_{1}}\\{{a}_{2}x{+b}_{2}y{=c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=9}\\{y=5}\end{array}\right.$,关于x,y的方程组$\left\{\begin{array}{l}{{{a}_{1}x}^{2}-{2a}_{1}x{+b}_{1}y{=c}_{1}{-a}_{1}}\\{{{a}_{2}x}^{2}-{2a}_{2}x{+b}_{2}y{=c}_{2}{-a}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,且AD交EF于O,则∠DOF的度数是90度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,有一个用木条钉成的平行四边形玩具,对角线AC,BD之间用抻直的皮筋连接,已知AB=1,BC=$\sqrt{3}$,若推动这个玩具,当∠ABC=90°时,皮筋BD长是(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列标志图中,既是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(  )
A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=$\sqrt{2}$CD

查看答案和解析>>

同步练习册答案