精英家教网 > 初中数学 > 题目详情
如图,已知⊙O1为△ABC的外接圆,以BC为直径作⊙O2,交AB的延长线于D,连接CD,且∠BCD=精英家教网∠A.
(1)求证:CD为⊙O1的切线;
(2)如果CD=2,AB=3,试求⊙O1的直径.
分析:(1)要证DC是⊙O1的切线,只要连接O1C,求证∠O1CD=90°即可;
(2)运用切割线定理DB的长,再运用勾股定理求出BC的长,再证明△BCD∽△CEB,解得CE=5.
解答:精英家教网(1)证明:
证法一:过点C作⊙O1的直径CE,并连接BE(1分)
∵∠BCD=∠A,∠E=∠A
∴∠BCD=∠E(3分)
∵CE为⊙O1的直径
∴∠CBE=90°(4分)
∴∠E+∠ECB=90°
∴∠BCD+∠ECB=90°
即EC⊥CD
∴CD为⊙O1的切(6分)
证法二:过C作⊙O1的直径CE,连AE,利用圆内接四边形的外角的性质进行证明.
证法三:连OO1、O1O2并延长O1O2
BC
于点M,利用圆心角关系进行证明.

(2)解:
解法一:∵CD为⊙O1的切线
∴CD2=DB•DA=DB•(DB+AB)由CD=2,AB=3
解得DB=1,DB=-4(舍去)(8分)
∵CB为⊙O2的直径
∴∠D=90°,则BC=
DC2+DB2
=
22+12
=
5
(9分)
∴△BCD∽△CEB
BC
CE
=
BD
CB

5
CE
=
1
5
,解得CE=5.(12分)
解法二:在求出DB=1的基础上,过O作OF⊥AB垂足为F,由四边形O1CDF是矩形进行解答;
解法三:在求出DB=1的基础上,由△O1O2C∽△COB可求出半径;
解法四:在求出DB=1的基础上,根据勾股定理,求AC;由△CDB∽△CAE可求出直径.
点评:本题考查的是切线的判定,同时考查了相似三角形的判定和性质,切割线定理,勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源:2005年江苏省连云港市灌云县中考数学模拟试卷(一)(解析版) 题型:解答题

如图,已知⊙O1为△ABC的外接圆,以BC为直径作⊙O2,交AB的延长线于D,连接CD,且∠BCD=∠A.
(1)求证:CD为⊙O1的切线;
(2)如果CD=2,AB=3,试求⊙O1的直径.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2004•龙岩)如图,已知⊙O1为△ABC的外接圆,以BC为直径作⊙O2,交AB的延长线于D,连接CD,且∠BCD=∠A.
(1)求证:CD为⊙O1的切线;
(2)如果CD=2,AB=3,试求⊙O1的直径.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(13)(解析版) 题型:解答题

(2004•龙岩)如图,已知⊙O1为△ABC的外接圆,以BC为直径作⊙O2,交AB的延长线于D,连接CD,且∠BCD=∠A.
(1)求证:CD为⊙O1的切线;
(2)如果CD=2,AB=3,试求⊙O1的直径.

查看答案和解析>>

科目:初中数学 来源:2004年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2004•龙岩)如图,已知⊙O1为△ABC的外接圆,以BC为直径作⊙O2,交AB的延长线于D,连接CD,且∠BCD=∠A.
(1)求证:CD为⊙O1的切线;
(2)如果CD=2,AB=3,试求⊙O1的直径.

查看答案和解析>>

同步练习册答案