精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,以B点为原点建立直角坐标系,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,AB=10,求直线AC的解析式;
(3)在(2)中的条件下,在直线AC上是否存在P点,使得△PAD的面积等于△ABE的面积?若存在,请求出P的坐标;若不存在,请说明理由.
分析:(1)利用平行线的性质以及等腰三角形的性质得出∠ACD=∠ACB,进而得出△ADC≌△AEC,即可得出答案;
(2)首先由AD=8,DC=4,AB=10,得出C,A点坐标,进而得出直线AC的解析式;
(3)首先求出S△ABE=
1
2
×6×8=24,设△PAD的边AD上的高为h,则由S△PAD=S△ABE得出h的值,进而得出P点横坐标,再代入y=2x+20得出纵坐标即可.
解答:解:(1)∵AB∥CD,∴∠ACD=∠BAC,
∵AB=BC,∴∠ACB=∠BAC,
∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,
∴∠D=∠AEC=90°,
在△ADC和△AEC中
∠ADC=∠AEC
∠ACD=∠ACE
AC=AC

∴△ADC≌△AEC (AAS),
∴AD=AE;

(2)∵AD=8,DC=4,AB=10,
∴可得点C的坐标为(-6,8),A(-10,0),
设直线AC的解析式为y=ax+b,则
-6a+b=8
-10a+b=0

解得:
a=2
b=20

∴直线AC的解析式为:y=2x+20;

(3)存在,
理由:延长AD,在直线AC上取一点P,连接PD,过点P作△ADP的高h,
∵AD=AE=8,AB=10,
∴BE=6,
∴S△ABE=
1
2
×6×8=24,
设△PAD的边AD上的高为h,
则由S△PAD=S△ABE
1
2
×8×h=24

解得:h=6,
所以P的横坐标为-4或-16,
代入y=2x+20得:
y=2×(-4)+20=12,或y=2×(-16)+20=-12,
∴P点的纵坐标为12或-12,
所以P的坐标为(-4,12)或(-16,-12).
点评:此题主要考查了待定系数法求一次函数解析式以及函数图象上点的坐标特点以及全等三角形的判定与性质等知识,得出直线AC的解析式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案