精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正确的是( )

A.①②③④
B.②③
C.①②④
D.①③④

【答案】C
【解析】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

∴BE=2AE;故①正确;

∵PC=CD,∠PCD=30°,

∴∠PDC=75°,

∴∠FDP=15°,

∵∠DBA=45°,

∴∠PBD=15°,

∴∠FDP=∠PBD,

∵∠DFP=∠BPC=60°,

∴△DFP∽△BPH;故②正确;

∵∠FDP=∠PBD=15°,∠ADB=45°,

∴∠PDB=30°,而∠DFP=60°,

∴∠PFD≠∠PDB,

∴△PFD与△PDB不会相似;故③错误;

∵∠PDH=∠PCD=30°,∠DPH=∠DPC,

∴△DPH∽△CPD,

∴DP2=PH·PC,故④正确;

故答案为:C.

根据正方形的性质,得到四边相等,四角相等,得到BE=2AE;由已知条件得到△DFP∽△BPH,△DPH∽△CPD;得到比例得到DP2=PH·PC;判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一个长为,宽为的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.

1)请用两种不同方法,求图2中阴影部分的面积(不用化简)

方法1____________________

方法2____________________

2)观察图2,写出之间的等量关系,并验证;

3)根据(2)题中的等量关系,解决如下问题:

①若,求的值;

②若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.
(1)求证:OE=OF;
(2)若AB=6,BC=5,OE=2,求四边形BCFE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强爱国主义教育,提高思想道德素质,某中学决定组织部分班级去山西国民师范旧址革命活动纪念馆开展红色旅游活动,在参加此次活动的师生中,若每位教师带17名学生,还剩12名学生没人带;若每位教师带18名学生,就有一位教师少带4名学生.现有甲、乙两种大客车,两种客车的载客量和租金如下表所示.

类别

甲种客车

乙种客车

载客量(人/辆)

30

42

租金(元/辆)

300

420

1)参加此次红色旅游活动的教师和学生各有多少人?

2)为了安全,每辆客车上要有2名教师.则怎样租车可以保证师生均有车坐,而且每辆车上都没有空座,也不超载,此时租车的费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】好学小东同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x2x3x3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(-6)+2×(-6)×4+3×4×5-3,即一次项为-3x

请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.

(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为_____

(2)(x+6)(2x+3)(5x-4)所得多项式的二次项系数为_______

(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;

(4)(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.

[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).

[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.

[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:

BC=a+b,AD=________,

在直角梯形ABCD中,有BC________AD(填大小关系),即________,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:

月用水量(吨)

4

5

6

9

户数

3

4

2

1

则关于这10户家庭的月用水量,下列说法错误的是 ( )
A.中位数是5吨
B.众数是5吨
C.极差是3吨
D.平均数是5.3吨

查看答案和解析>>

同步练习册答案