5£®Ö±Ïßy=x-6ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢B£¬µãE´ÓBµã³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØÏ߶ÎBOÏòOµãÒƶ¯£¨µãE²»Äܵ½´ïµãO£©£¬¹ýE×÷EF¡ÎAB£¬½»xÖáÓÚF£®½«ËıßÐÎABEFÑØEFÕÛµþ£¬µÃµ½ËıßÐÎDCEF£¬ÆäÖУ¬µãAµÄ¶ÔÓ¦µãΪµãD£¬µãBµÄ¶ÔÓ¦µãΪµãC£¬Ï߶ÎCD½»yÖáÓÚHµã£¬ÉèµãEµÄÔ˶¯Ê±¼äΪtÃ룮
£¨1£©ÇóÖ¤£ºËıßÐÎDHEFΪƽÐÐËıßÐΣ»
£¨2£©µ±tΪºÎֵʱ£¬ËıßÐÎDHEFΪÁâÐΣ»
£¨3£©ÉèËıßÐÎDCEFÂäÔÚµÚÒ»ÏóÏÞµÄͼÐÎÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý±í´ïʽ£®

·ÖÎö £¨1£©ÓÉÖ±ÏßABµÄ½âÎöʽ¿ÉµÃ³öOA=OB£¬´Ó¶øµÃ³ö¡ÏBAO=45¡ã£¬¡ÏOFE=45¡ã£¬¡ÏAFE=135¡ã£¬½áºÏÕÛµþµÄÐÔÖʿɵóö¡ÏDFE=135¡ã£¬½ø¶øµÃ³ö¡ÏAFD=90¡ã£¬¼´DF¡ÍxÖᣬDF¡ÎEH£¬¸ù¾ÝÁ½×é¶Ô±ß·Ö±ðƽÐм´¿ÉÖ¤³öËıßÐÎDHEFΪƽÐÐËıßÐΣ»
£¨2£©¸ù¾ÝÁâÐεÄÐÔÖʿɵóöEF=DF£¬´Ó¶ø¿ÉµÃ³ö¹ØÓÚʱ¼ätµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¸ù¾ÝËıßÐÎDCEFÂäÔÚµÚÒ»ÏóÏÞÄÚµÄͼÐεÄÐÎ×´²»Í¬·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£¬¸ù¾ÝÕÛµþµÄÐÔÖÊÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð £¨1£©ÒÀÕÕÌâÒâ»­³öͼÐΣ¬Èçͼ1Ëùʾ£®
¡àÖ±Ïßy=x-6ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢B£¬
¡àA£¨6£¬0£©£¬B£¨0£¬-6£©£¬
¡àOA=OB£¬
¡ß¡ÏAOB=90¡ã£¬
¡à¡ÏBAO=45¡ã£¬
¡ßAB¡ÎEF£¬
¡à¡ÏOFE=45¡ã£¬¡ÏAFE=135¡ã£®
ÓÉÕÛµþµÄÐÔÖÊ¿ÉÖª£º¡ÏDFE=135¡ã£¬
¡à¡ÏAFD=90¡ã£¬¼´DF¡ÍxÖᣬ
¡àDF¡ÎEH£¬
¡ßDH¡ÎEF£¬
¡àËıßÐÎDHEFΪƽÐÐËıßÐΣ®
£¨2£©ÒªÊ¹Æ½ÐÐËıßÐÎDHEFΪÁâÐΣ¬Ö»ÐèEF=DF£¬
¡à$\sqrt{2}£¨6-t£©=t$£¬
¡à$t=\frac{{6\sqrt{2}}}{{\sqrt{2}+1}}=12-6\sqrt{2}$£®
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¨Èçͼ2Ëùʾ£©£º
¢Ùµ±0£¼t¡Ü3ʱ£¬
ËıßÐÎDCEFÂäÔÚµÚÒ»ÏóÏÞÄÚµÄͼÐÎÊÇ¡÷DFG£¬
´ËʱGF=DF=t£¬
¡àS=$\frac{1}{2}{t^2}$£»
¢Úµ±3£¼t£¼6ʱ£¬
ËıßÐÎDCEFÂäÔÚµÚÒ»ÏóÏÞÄÚµÄͼÐÎÊÇÌÝÐΣ¬
´ËʱDF=GF=t£¬OG=OH=2t-6£¬
¡àS=$\frac{1}{2}{t^2}$-$\frac{1}{2}$£¨2t-6£©2=-$\frac{3}{2}{t}^{2}$+12t-18=$-\frac{3}{2}{£¨t-4£©^2}+6$£®
×ÛÉÏ¿ÉÖª£ºSÓëtµÄº¯Êý±í´ïʽΪS=$\left\{\begin{array}{l}{\frac{1}{2}{t}^{2}£¨0£¼t¡Ü3£©}\\{-\frac{3}{2}£¨t-4£©^{2}+6£¨3£¼t£¼6£©}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁËƽÐÐËıßÐεÄÅж¨¡¢ÕÛµþµÄÐÔÖÊ¡¢ÁâÐεÄÐÔÖÊÒÔ¼°Èý½ÇÐεÄÃæ»ý£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³öDF¡ÎEH£»£¨2£©ÕÒ³ö¹ØÓÚtµÄÒ»ÔªÒ»´Î·½³Ì£»£¨3£©·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝÕÛµþµÄÐÔÖÊÕÒ³öÏàµÈµÄ±ß½Ç¹ØϵÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¾ØÐÎABCDÖУ¬µãEÊÇADµÄÖе㣬BE´¹Ö±AC½»ACÓÚµãF£¬ÇóÖ¤£º¡÷DEF¡×¡÷BED£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª£ºÈçͼ£¬ÁâÐÎABCD ÖУ¬¹ýAD µÄÖеã E×÷AC µÄ´¹ÏßEF£¬½»AB ÓÚµã M£¬½»CB µÄÑÓ³¤ÏßÓÚµãF£®Èç¹ûFBµÄ³¤ÊÇ $\sqrt{2}$£¬¡ÏAEM=30¡ã£®ÇóÁâÐÎABCD µÄÖܳ¤ºÍÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èç¹ûʽ×Ó$\sqrt{{{£¨x-3£©}^2}}-|{x-2}|$»¯¼òµÄ½á¹ûΪ5-2x£¬ÔòxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x¡Ý3B£®x¡Ü2C£®x¡Ý2D£®2¡Üx¡Ü3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁв»µÈʽÖÐÊÇÒ»ÔªÒ»´Î²»µÈʽµÄÊÇ£¨¡¡¡¡£©
A£®y+3¡ÝxB£®3-4£¼0C£®2x2-4¡Ý1D£®2-x¡Ü4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô2x6-my4Óë-3x3y2nÊÇͬÀàÏÔò£¨m-n£©2015=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ö±Ïßy=kx¾­¹ý¶þ¡¢ËÄÏóÏÞ£¬ÔòÅ×ÎïÏßy=kx2+2x+k2ͼÏóµÄ´óÖÂλÖÃÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬ADÊǽÇƽ·ÖÏߣ¬µãEÔÚADÉÏ£¬Çëд³öͼÖÐÁ½¶ÔÈ«µÈÈý½ÇÐΣ¬²¢Ñ¡ÔñÆäÖеÄÒ»¶Ô¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Ïò·ÅÔÚË®²Ûµ×²¿µÄÉÕ±­×¢Ë®£¨Á÷Á¿Ò»¶¨£©£¬×¢ÂúÉÕ±­ºó£¬¼ÌÐøעˮ£¬Ö±ÖÁ×¢ÂúË®²Û£®Ë®²ÛÖÐË®ÃæÉÏÉý¸ß¶ÈhÓëעˮʱ¼äµÄ¹Øϵ´óÖÂÊÇÏÂÁÐͼÏóÖеģ¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸