精英家教网 > 初中数学 > 题目详情
有n个数,第一个记为a1,第二个记为a2;…,第n个记为an,若 a1=
1
2
,且从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.
(1)则a2=
2
2
;a3=
-1
-1
;a4=
1
2
1
2

(2)根据(1)的计算结果,猜想a2005=
1
2
1
2
;a2006=
2
2

(3)计算:a1•a2•a3…a2005•a2006的值.
分析:(1)根据倒数的定义得到a2=
1
1-
1
2
=2;  a3=
1
1-2
=-1;a4=
1
1-(-1)
=
1
2

(2)根据(1)中计算结果发现从第四个开始循环出现前面的三个数,由于2005=3×668+1,则a2005=a1,a2006=a2
(3)根据数列的规律得到a1•a2•a3…a2005•a2006=
1
2
×2×(-1)×
1
2
×2×(-1)×…×
1
2
×2,从开始每三个数一组共有668组,外加后面
1
2
×2,
由于每组数的积为-1,由此得到a1•a2•a3…a2005•a2006=1.
解答:解:(1)a2=
1
1-
1
2
=2;  a3=
1
1-2
=-1;a4=
1
1-(-1)
=
1
2

(2)∵2005=3×668+1,
∴a2005=a1=
1
2
;a2006=a2=2;
(3)a1•a2•a3…a2005•a2006=
1
2
×2×(-1)×
1
2
×2×(-1)×…×
1
2
×2=
(-1)×…×(-1)
668个-1相乘
×1=1.
故答案为2,-1,
1
2
1
2
,2.
点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-
12
,从第2个数起,每个数都等于“1与它前面那个数的差的倒数”.
(1)计算a2,a3,a4的值.
(2)根据以上计算结果,直接写出a1998,a2000的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-数学公式,从第2个数起,每个数都等于“1与它前面那个数的差的倒数”.
(1)计算a2,a3,a4的值.
(2)根据以上计算结果,直接写出a1998,a2000的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-
1
2
,从第2个数起,每个数都等于“1与它前面那个数的差的倒数”.
(1)计算a2,a3,a4的值.
(2)根据以上计算结果,直接写出a1998,a2000的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有n个数,第一个记为,第二个记为;……,第n个记为,若 =,且从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。

(1)则=_______;  =_______;   =_______。

(2)根据(1)的计算结果,猜想=_______;  =_______

(3)计算: 的值。

查看答案和解析>>

同步练习册答案