【题目】如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
【答案】
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求地面矩形AOBC的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,点A向右移动1个单位得到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点A,B,C分别表示有理数a,b,c,
(1)当n=1时,
①点A,B,C三点在数轴上的位置如图所示,a,b,c三个数的乘积为正数,数轴上原点的位置可
A.在点A左侧或在A,B两点之间 B.在点C右侧或在A,B两点之间
C.在点A左侧或在B,C两点之间 D.在点C右侧或在B,C两点之间
②若这三个数的和与其中的一个数相等,求a的值;
(2)将点C向右移动(n+2)个单位得到点D,点D表示有理数d,a、b、c、d四个数的积为正数,这四个数的和与其中的两个数的和相等,且a为整数,请在数轴上标出点D并用含n的代数式表示a.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,计算出1+5+52+53+…52017的值为( )
A. 52018﹣1 B. 52019﹣1 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)当t=4时,求△BMN面积;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,小明同学在某月的日历上圈出个数,正方形的方框内的4个数的和是32,那么第1个数是.
(2)如图2,玛丽也在上面的日历上圈出个数,斜框内的4个数的和是__________(用含的代数式表示);
(3)某月有5个星期日的和是75,则这个月中最后1个星期日是__________号;
(4)变式拓展:
若干个偶数按每行8个数排成如图:
①如图①,长方形方框内的9个数的和为__________.
②如图②,小丽所画的斜框内9个数,若它们的和为,则中间的数△为__________(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.
(1)当时,点的坐标为( , )
(2)设,求出与的函数关系式,写出函数的定义域。
(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.
如图,已知一魔幻数轴上有A,O,B三点,其中A,O对应的数分别为﹣10,0,AB为47个单位长度,甲,乙分别从A,O两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B后以当时速度立即返回,当甲回到点A时,甲、乙同时停止运动.
问:(1)点B对应的数为 ,甲出发 秒后追上乙(即第一次相遇)
(2)当甲到达点B立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少?
(3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数,则下列结论正确的是( )
A. 其图象分别位于第一、三象限
B. 当时,随的增大而减小
C. 若点在它的图象上,则点也在它的图象上
D. 若点都在该函数图象上,且,则
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com