13£®ÎÒÊÐijÖÐѧ¾ö¶¨ÔÚѧÉúÖпªÕ¹¶ªÉ³°ü¡¢´òÀºÇò¡¢Ìø´óÉþºÍÌßë¦ÇòËÄÖÖÏîÄ¿µÄ»î¶¯£¬ÎªÁ˽âѧÉú¶ÔËÄÖÖÏîÄ¿µÄϲ»¶Çé¿ö£¬Ëæ»úµ÷²éÁ˸ÃУmÃûѧÉú×îϲ»¶µÄÒ»ÖÖÏîÄ¿£¨Ã¿ÃûѧÉú±ØÑ¡ÇÒÖ»ÄÜÑ¡ÔñËÄÖֻÏîÄ¿µÄÒ»ÖÖ£©£¬²¢½«µ÷²é½á¹û»æÖƳÉÈçϵIJ»ÍêÕûµÄͳ¼Æͼ±í£º
 Ñ§Éú×îϲ»¶µÄ»î¶¯ÏîÄ¿µÄÈËÊýͳ¼Æ±í     
ÏîĿѧÉúÊý£¨Ãû£©°Ù·Ö±È
¶ªÉ³°ü2010%
´òÀºÇò60p%
Ìø´óÉþn40%
Ìßë¦Çò4020%
¸ù¾Ýͼ±íÖÐÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©m=200£¬n=80£¬p=30£»
£¨2£©Çë¸ù¾ÝÒÔÉÏÐÅÏ¢Ö±½Ó²¹È«ÌõÐÎͳ¼Æͼ£»
£¨3£©¸ù¾Ý³éÑùµ÷²é½á¹û£¬ÇëÄã¹À¼Æ¸ÃУ2000ÃûѧÉúÖÐÓжàÉÙÃûѧÉú×îϲ»¶Ìø´óÉþ£®

·ÖÎö £¨1£©ÀûÓÃ20¡Â10%=200£¬¼´¿ÉµÃµ½mµÄÖµ£»ÓÃ200¡Á40%¼´¿ÉµÃµ½nµÄÖµ£¬ÓÃ60¡Â200¼´¿ÉµÃµ½pµÄÖµ£®
£¨2£©¸ù¾ÝnµÄÖµ¼´¿É²¹È«ÌõÐÎͳ¼Æͼ£»
£¨3£©¸ù¾ÝÓÃÑù±¾¹À¼Æ×ÜÌ壬2000¡Á40%£¬¼´¿É½â´ð£®

½â´ð ½â£º£¨1£©m=20¡Â10%=200£»n=200¡Á40%=80£¬60¡Â200=30%£¬p=30£¬
¹Ê´ð°¸Îª£º200£¬80£¬30£»
£¨2£©Èçͼ£¬

£¨3£©2000¡Á40%=800£¨ÈË£©£¬
´ð£º¹À¼Æ¸ÃУ2000ÃûѧÉúÖÐÓÐ800ÃûѧÉú×îϲ»¶Ìø´óÉþ£®

µãÆÀ ±¾Ì⿼²éÁËÌõÐÎͳ¼Æͼ¡¢ÉÈÐÎͳ¼Æͼ¡¢¸ÅÂʹ«Ê½£¬¶Á¶®Í³¼Æͼ£¬´Óͳ¼ÆͼÖеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆͼÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÈçͼËùʾ£¬Ò»´Îº¯Êýy1=kx+bµÄͼÏóÓë·´±ÈÀýº¯Êýy2=$\frac{m}{x}$µÄͼÏó½»ÓÚA£¨-2£¬n£©£¬B£¨1£¬-3£©Á½µã£®
£¨1£©ÊÔÈ·¶¨ÉÏÊöÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£»
£¨3£©¸ù¾ÝͼÏóÖ±½Óд³öʹy1£¼y2µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÖ±Ïßy=kx+bÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬Óë·´±ÈÀýº¯Êý½»ÓÚÒ»ÏóÏÞÄÚµÄP£¨$\frac{1}{2}$£¬n£©£¬Q£¨4£¬m£©Á½µã£¬ÇÒtan¡ÏBOP=$\frac{1}{16}$£º
£¨1£©Çó·´±ÈÀýº¯ÊýºÍÖ±Ïߵĺ¯Êý±í´ïʽ£»
£¨2£©Çó¡÷OPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Í¬Î»½ÇÏàµÈ
B£®Èý½ÇÐεÄÈý¸öÄÚ½ÇÖУ¬ÖÁÉÙÓÐÒ»¸ö²»´óÓÚ60¡ã
C£®ÈκÎÊýµÄÁã´ÎÃݶ¼ÊÇ1
D£®´¹Ö±ÓÚͬһֱÏßµÄÁ½ÌõÖ±Ïß»¥Ïà´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª£ºµãPÊÇƽÐÐËıßÐÎABCD¶Ô½ÇÏßACËùÔÚÖ±ÏßÉϵÄÒ»¸ö¶¯µã£¨µãP²»ÓëµãA¡¢CÖغϣ©£¬·Ö±ð¹ýµãA¡¢CÏòÖ±ÏßBD×÷´¹Ïߣ¬´¹×ã·Ö±ðΪµãE¡¢F£¬µãOΪACµÄÖе㣮
£¨1£©µ±µãPÓëµãOÖغÏʱÈçͼ1£¬Ò×Ö¤OE=OF£¨²»ÐèÖ¤Ã÷£©
£¨2£©Ö±ÏßBPÈƵãBÄæʱÕë·½ÏòÐýת£¬µ±¡ÏOFE=30¡ãʱ£¬Èçͼ2¡¢Í¼3µÄλÖ㬲ÂÏëÏ߶ÎCF¡¢AE¡¢OEÖ®¼äÓÐÔõÑùµÄÊýÁ¿¹Øϵ£¿Çëд³öÄã¶Ôͼ2¡¢Í¼3µÄ²ÂÏ룬²¢Ñ¡ÔñÒ»ÖÖÇé¿ö¸øÓèÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚÏÂÁÐÖ±ÏßÖУ¬ÓëÖ±Ïßy=x+3ÏཻÓÚµÚ¶þÏóÏÞµÄÊÇ£¨¡¡¡¡£©
A£®y=xB£®y=2xC£®y=kx+2k+1£¨k¡Ù1£©D£®y=kx-2k+1£¨k¡Ù0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®²»¸Ä±ä·ÖʽµÄÖµ£¬Ê¹·Öʽ$\frac{{\frac{1}{2}{x^2}+\frac{1}{3}}}{{\frac{1}{2}{x^2}-\frac{1}{3}{x^3}}}$µÄ·Ö×ӺͷÖĸ¸÷ÏîµÄϵÊýÊÇÕûÊý£¬»¯¼òµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®$\frac{{2{x^2}+3}}{{2{x^2}-3{x^3}}}$B£®$\frac{{3{x^2}+2}}{{2{x^2}-3{x^3}}}$C£®$\frac{{3{x^2}+2}}{{3{x^2}-2{x^3}}}$D£®$\frac{{3{x^2}+2}}{{3{x^3}-2{x^2}}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÊµÊýaÔÚÊýÖáÉϵÄλÖÃÈçͼ£¬Ôò|a-3|=3-a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÏ߶ÎAB=14cm£¬CΪÏ߶ÎABÉÏÈÎÒ»µã£¬DÊÇACµÄÖе㣬EÊÇCBµÄÖе㣬ÇóDEµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸