精英家教网 > 初中数学 > 题目详情
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
证明:连接OD,过点O作OE⊥AC于E点,
则∠OEC=90°,
∵AB切⊙O于D,
∴OD⊥AB,
∴∠ODB=90°,
∴∠ODB=∠OEC;(3分)
又∵O是BC的中点,
∴OB=OC,
∵AB=AC,
∴∠B=∠C,
∴△OBD≌△OCE,(6分)
∴OE=OD,即OE是⊙O的半径,
∴AC与⊙O相切.(9分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=
7
DE
的长是
3
π
3
.求证:直线BC与⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=
3
5
,求DC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交于点P,则∠BPC=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D在AC上,以AD为直径的⊙O恰与边BC切于E,且AE平分∠BAC,试判断
△ABC的形状,并加以说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形ABCD中,AB=8,BC=6,如果圆A是以点A为圆心,9为半径的圆,那么下列判断正确的是(  )
A.点B、C均在圆A外
B.点B在圆A外、点C在圆A内
C.点B在圆A内、点C在圆A外
D.点B、C均在圆A内

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,半径为6的⊙M与x轴相切,与y轴相交于A、B两点,OA=AB,则圆心M的坐标为(  )
A.(-6,6)B.(-4,6)C.(-2
10
,6)
D.(-4
2
,6)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是⊙O的直径,AB与⊙O相切于点A,四边形ABCD是平行四边形,BC交⊙O于点E.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为5cm,弦CE的长为8cm,求AB的长.

查看答案和解析>>

同步练习册答案