精英家教网 > 初中数学 > 题目详情
如图,已知△ABC中,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,∠A=70°.
(1)若∠ACB=40°,求∠BOC的度数;
(2)当∠ACB的大小改变时,∠BOC的大小是否发生变化?为什么?请写出证明过程.
分析:(1)已知∠A=70°,∠ACB=40°,由内角和定理求∠ABC,再根据角平分线性质求∠OBC,∠OCB,在△OBC中,由内角和定理求∠BOC的度数;
(2)∠BOC的大小不发生变化.可由角平分线的性质及三角形内角和定理求出∠BOC=90°+
1
2
∠A.
解答:解:(1)∵在△ABC中,∠A=70°,∠ACB=40°,
∴∠ABC=180°-∠A-∠ACB=70°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠OBC=
1
2
∠ABC=35°,∠OCB=
1
2
∠ACB=20°,
∴∠BOC=180°-∠OBC-∠OCB=125°;

(2)∠BOC的大小不发生变化.
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠BOC=180°-∠OBC-∠OCB,
=180°-
1
2
(∠ABC+∠ACB),
=180°-
1
2
(180°-∠A),
=90°+
1
2
∠A=125°,
∴∠BOC的大小只与∠A的大小相关.
点评:本题考查了三角形内角和定理,三角形的角平分线.关键是由三角形内角和定理,角平分线性质对所求角进行转化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案