精英家教网 > 初中数学 > 题目详情
若x1和x2分别是一元二次方程2x2+7x-4=0的两根.
(1)求|x1-x2|的值;  (2)x13+x23
分析:(1)先利用根与系数的关系得到两根之和及两根之差,再对要求的代数式变形,把数值代入求解即可;
(2)利用立方和公式把代数式因式分解,再变形.再利用根与系数的关系即可求解.
解答:解:(1)∵x1和x2分别是一元二次方程2x2+7x-4=0的两根.
∴x1+x2=-
b
a
=-
7
2
,x1•x2=
c
a
=-2,
∵|x1-x2|=
(x1+x2 2-4x 1•x 2
=
9
2


(2)∵x13+x23=(x1+x2)(x12-x1x2+x22
=(x1+x2)[(x1+x22-3x1x2]
∵x1+x2=-
b
a
=-
7
2
,x1•x2=
c
a
=-2,
∴原式=-
511
8
点评:本题考查了根与系数的关系,常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
)
,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式
 
,伴随直线的解析式
 

(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
 

(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:∵ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
.,x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上所述得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决下列问题:
(1)若矩形的长和宽是方程4x2-13x+3=0的两个根,则矩形的周长为
13
2
13
2
,面积为
3
4
3
4

(2)若2+
3
是x2-4x+c=0的一个根,求方程的另一个根及c的值.
(3)直角三角形的斜边长是5,另两条直角边的长分别是x的方程:x2+(2m-1)x+m2+3=0的解,求m的值.

查看答案和解析>>

科目:初中数学 来源:河南省同步题 题型:解答题

已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线。
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:
伴随抛物线的关系式_________________;
伴随直线的关系式___________________;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;
(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件。

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(26):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目:初中数学 来源:2008-2009学年九年级数学联考试卷(解析版) 题型:解答题

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

同步练习册答案