精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是(   )
A.1B.2 C.3 D.4
D

试题分析:二次函数y=ax2+bx+c(a≠0)的图象如图所示,从图形来看二次函数与X轴有两个交点,那么方程有两个不相等的实数根,所以,即2-4ac>0,所以①正确;从图象来看,二次函数的图象开口向上,所以a>0,对称轴在y轴的右边,所以,解得b<0;二次函数y=ax2+bx+c与y轴的交点在其负半轴,那么,即c<0,所以abc>0,所以②正确;从图象来看,二次函数与X轴有两个交点,一个交点在-2、-1之间,即在-2这点二次函数的函数值大于0,所以,即,因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,即,那么2a=-b,所以-2b=4a,所以,因此③8a+c>0正确;因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,-2点关于对称轴x=-1的对称点是3,所以二次函数在-3点的函数值也大于0,所以9a+3b+c<0,所以全部正确
点评:本题考查二次函数,解答本题需要掌握二次函数的对称轴,开口方向及与X轴的交点情况等等
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).

(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴的交点为A、B,与 轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.

(1)求抛物线的解析式;
(2)设抛物线轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;
(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB为直径的⊙与y轴正半轴交于点C,连接BC、AC,CD是⊙的切线,AD⊥CD于点D,tan∠CAD=,抛物线过A、B、C三点.

(1)求证:∠CAD=∠CAB;
(2)求抛物线的解析式;
(3)判断抛物线的顶点E是否在直线CD上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线的开口向下,顶点坐标为(2,-3),那么该抛物线有(   )
A.最小值 -3B.最大值-3 C.最小值2D.最大值2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两条抛物线y1=-x2+1、y2=-x2-1 与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为   (  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数
轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的
整点个数是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=2(x+1)2-5的顶点坐标是               .

查看答案和解析>>

同步练习册答案