【题目】感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.
(1)求证:△ACB≌△BED;
(2)△BCD的面积为 (用含m的式子表示).
拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.
应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为 ;若BC=m,则△BCD的面积为 (用含m的式子表示).
【答案】感知:(1)详见解析;(2)m2;拓展: m2,理由详见解析;应用:16, m2.
【解析】
感知:(1)由题意可得CA=CB,∠A=∠ABC=45°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;
(2)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;
拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;
应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.
感知:证明:(1)∵△ABC是等腰直角三角形,
∴CA=CB=m,∠A=∠ABC=45°,
由旋转的性质可知,BA=BD,∠ABD=90°,
∴∠DBE=45°,
在△ACB和△DEB中,
,
∴△ACB≌△BED(AAS)
(2)∵△ACB≌△BED
∴DE=BC=m
∴S△BCD=BC×ED=m2,
故答案为 m2,
拓展:作DG⊥CB交CB的延长线于G,
∵∠ABD=90°,
∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,
∴∠A=∠DBG,
在△ACB和△BGD中,
,
∴△ACB≌△BGD(AAS),
∴BC=DG=m
∴S△BCD=BC×DG=m2,
应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,
∴∠ANB=∠M=90°,BN=BC=4.
∴∠NAB+∠ABN=90°.
∵∠ABD=90°,
∴∠ABN+∠DBM=90°,
∴∠NAB=∠MBD.
∵线段BD是由线段AB旋转得到的,
∴AB=BD.
在△AFB和△BED中,
,
∴△ANB≌△BMD(AAS),
∴BN=DM=BC=4.
∴S△BCD=BCDM=×8×4=16,
若BC=m,则BN=DM=BC=m,
∴S△BCD=BCDM=×m×m=m2
故答案为16,m2.
科目:初中数学 来源: 题型:
【题目】如图,已知四边形为矩形,点在上(不与,重合),连接,,以为一边作正方形,使得点在边上,给出以下结论:①;②;③;④;⑤;其中正确的结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别 | 睡眠时间x(小时) |
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中的值 ;
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.
(1)当m=4时,求n的值;
(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;
(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司种植和销售一种野山菌,已知该野山菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该野山菌的销售量y(千克)与销售价格x(元/千克)的函数关系如图所示:
(1)求y与x之间的函数关系式;
(2)求这一天销售野山菌获得的利润W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12米,BC=24米,动点P从点A开始沿边AB向B以2米/秒的速度运动(不与点B重合),动点Q从点B开始沿BC向C以4米/秒的速度运动(不与点C重合).如果P、Q分别从A、B同时出发,设运动时间为x秒,四边形APQC的面积为y平方米.
(1)求y与x之间的函数关系式,直接写出自变量x的取值范围;
(2)求当x为多少时,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com