分析 连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
解答 解:如图,连结BB′,
∵△ABC绕点A顺时针旋转60°得到△AB′C′.
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′=AB′,
延长BC′交AB′于点D,
又∵AC′=B′C′,
∴BD垂直平分AB′,
∴AD=B′D,
∵∠C=90°,AC=BC=$\sqrt{2}$
∴AB=$\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$=2,
∴AB′=2
∴AD=B′D=1,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{3}$,C′D=$\sqrt{AC{′}^{2}-A{D}^{2}}$=1,
∴BC′=BD-C′D=$\sqrt{3}-1$.
点评 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com