5£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßl£ºy=-$\frac{\sqrt{3}}{3}$x+4ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãM£¬N£¬¸ßΪ3µÄµÈ±ßÈý½ÇÐÎABC£¬±ßBCÔÚxÖáÉÏ£¬½«´ËÈý½ÇÐÎÑØ×ÅxÖáµÄÕý·½ÏòƽÒÆ£¬ÔÚƽÒƹý³ÌÖУ¬µÃµ½¡÷A1B1C1£¬µ±µãB1ÓëÔ­µãÖغÏʱ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Çó³öµãA1µÄ×ø±ê£¬²¢ÅжϵãA1ÊÇ·ñÔÚÖ±ÏßlÉÏ£»
£¨2£©Çó³ö±ßA1C1ËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨3£©ÔÚ×ø±êƽÃæÄÚÕÒÒ»µãP£¬Ê¹µÃÒÔP¡¢A1¡¢C1¡¢MΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇëÖ±½Óд³öPµã×ø±ê£®

·ÖÎö £¨1£©Èçͼ×÷A1H¡ÍxÖáÓÚH£®ÔÚRt¡÷A1OHÖУ¬ÓÉA1H=3£¬¡ÏA1OH=60¡ã£¬¿ÉµÃOH=A1H•tan30¡ã=$\sqrt{3}$£¬Çó³öµãA×ø±ê¼´¿É½â¾öÎÊÌ⣻
£¨2£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣻
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¼´¿É½â¾öÎÊÌ⣻

½â´ð ½â£º£¨1£©Èçͼ×÷A1H¡ÍxÖáÓÚH£®
ÔÚRt¡÷A1OHÖУ¬¡ßA1H=3£¬¡ÏA1OH=60¡ã£¬
¡àOH=A1H•tan30¡ã=$\sqrt{3}$£¬
¡àA1£¨$\sqrt{3}$£¬3£©£¬
¡ßx=$\sqrt{3}$ʱ£¬y=-$\frac{\sqrt{3}}{3}$¡Á$\sqrt{3}$+4=3£¬
¡àA1ÔÚÖ±Ïßy=-$\frac{\sqrt{3}}{3}$x+4ÉÏ£®

£¨2£©¡ßA1£¨$\sqrt{3}$£¬3£©£¬C1£¨2$\sqrt{3}$£¬0£©£¬
ÉèÖ±ÏßA1C1µÄ½âÎöʽΪy=kx+b£¬ÔòÓÐ$\left\{\begin{array}{l}{\sqrt{3}k+b=3}\\{2\sqrt{3}k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\sqrt{3}}\\{b=6}\end{array}\right.$£¬
¡àÖ±ÏßA1C1µÄ½âÎöʽΪy=-$\sqrt{3}$x+6£®

£¨3£©¡ßM£¨4$\sqrt{3}$£¬0£©£¬A1£¨$\sqrt{3}$£¬3£©£¬C1£¨2$\sqrt{3}$£¬0£©£¬
ÓÉͼÏó¿ÉÖª£¬µ±ÒÔP¡¢A1¡¢C1¡¢MΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐÎʱ£¬P1£¨3$\sqrt{3}$£¬3£©£¬P2£¨5$\sqrt{3}$£¬-3£©£¬P3£¨-$\sqrt{3}$£¬3£©£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌ⣮ƽÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÓÃÒ»¸öÔ²ÐĽÇΪ180¡ã£¬°ë¾¶Îª4µÄÉÈÐÎΧ³ÉÒ»¸öԲ׶µÄ²àÃ棬ÔòÕâ¸öԲ׶µÄµ×ÃæÔ²µÄ°ë¾¶Îª2£¬¸ÃԲ׶µÄ¸ßΪ2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬ÔÚ¡÷ABOÖУ¬A£¨-4£¬0£©£¬B£¨0£¬3£©£¬OCΪAB±ßµÄÖÐÏߣ¬ÒÔOΪԲÐÄ£¬Ï߶ÎOC³¤Îª°ë¾¶»­»¡£¬½»xÖáÕý°ëÖáÓÚµãD£¬ÔòµãDµÄ×ø±êΪ£¨$\frac{5}{2}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚËıßÐÎABCDÖУ¬¶Ô½ÇÏßAC£¬BDÏཻÓÚµãO£®Èç¹ûAB¡ÎCD£¬ÇëÄãÌí¼ÓÒ»¸öÌõ¼þ£¬Ê¹µÃËıßÐÎABCD³ÉΪƽÐÐËıßÐΣ¬Õâ¸öÌõ¼þ¿ÉÒÔÊÇAB=CD£®£¨Ð´³öÒ»ÖÖÇé¿ö¼´¿É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®·Ö½âÒòʽ£º2x3-2xy2=2x£¨x+y£©£¨x-y£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ò»´Îº¯Êýy=-ax+bµÄͼÏó¾­¹ý¶þ¡¢Èý¡¢ËÄÏóÏÞ£¬Ôò»¯¼ò$\sqrt{{{£¨a-b£©}^2}}+\sqrt{a^2}$£¬ËùµÃµÄ½á¹ûÊÇ2a-b£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®²»µÈʽ×é$\left\{\begin{array}{l}{x+2£¾1}\\{2x-1¡Ü8-x}\end{array}\right.$µÄ×îСÕûÊý½âÊÇ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=3£¬AC=6£¬½«¡÷ABCÈƵãC°´ÄæʱÕë·½ÏòÐýתµÃµ½¡÷A1B1C£¬Ê¹CB1¡ÎAD£¬·Ö±ðÑÓ³¤AB¡¢CA1ÏཻÓÚµãD£¬ÔòÏ߶ÎBDµÄ³¤Îª9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®1$\frac{1}{3}$µÄ¾ø¶ÔÖµÊÇ1$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸