精英家教网 > 初中数学 > 题目详情
16.某地电话上网有A B两种收费方式,用户可以任选其一,收费方式A(计时制):0.05元/分;收费方式B(包月制)50元/月(限一部个人住宅电话上网);每种收费方式对上网时间都得加收通信费0.02元/分.某一用户一周内上网时间记录如下:周一 32分 周二 40分 周三 36分 周四 42分 周五 35分 周六 47分 周日 48分
(1)计算该用户一周内平均每天上网的时间;
(2)设改用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户支付的费用;
(3)如果该用户在一个月内(30天),按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?

分析 (1)平均时间=$\frac{总时间}{7}$.
(2)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费.
(3)将30×$\frac{2}{3}$小时分别代入(1)计算出费用的大小,再进行比较就可以得出结论.

解答 解:(1)该用户一周内平均每天上网的时间是:$\frac{32+40+36+42+35+47+48}{7}$=40(分钟).
答:该用户一周内平均每天上网的时间是40分钟.

(2)采用计时制应付的费用为0.1•x•60+0.2•x•60=18x(元),
采用包月制应付的费用为50+0.2•x•60=(50+12x)(元);

(3)若一个月内上网的时间为30×$\frac{2}{3}$=20小时,
则计时制应付的费用为18×20=360(元),
包月制应付的费用为50+12×20=290(元).
∵360>290
∴包月制合算.

点评 本题考查了一元一次方程的应用,表示费用的时候注意单位的统一.解决问题的关键是读懂题意,找到所求的量的等量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在直角坐标系中,点A,B分别在x轴负半轴、y轴正半轴上,
OA=1,OB=$\sqrt{3}$,以AB为边在第二象限作□ABCD,∠DAB=75°.
(1)若BC=$\sqrt{2}$AB,求点D的坐标;
(2)在(1)的情况下,若反比例函数y=$\frac{k}{x}$的图象经过D点,求证:点C不在反比例函数y=$\frac{k}{x}$ 的图象上;
(3)问是否存在m,使得BC=mAB,且C、D两点均在反比例函数y=$\frac{k}{x}$的图象上?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),
(1)求经过B、E、C三点的抛物线的解析式;
(2)当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,过P作PQ∥y轴与抛物线交于点Q.连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,点P将线段AB分割成两条线段AP、PB,且AP:AB=PB:AP,那么点P就叫做线段AB的黄金分割点;若AB=3,那么AP的长为$\frac{-3+3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,线段BC所在的直线以每秒2个单位的速度,沿与其垂直的方向向上平行移动,设x秒时,该直线在△ABC内部的部分DE的长度为y,试写出y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,则羊圈的边长AB为20米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知有理数a,b,c满足abc<0,且a,b,c同号,若x=$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$,求代数式-x2+6x-2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=-$\frac{3}{4}$x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O出发沿OB边向终点B运动,设点P运动的时间为t秒.
(1)求点A,B的坐标;
(2)设△OPQ的面积为S,求S关于t的函数解析式;
(3)当PO=PQ时,请直接写出tan∠AOP的值;
(4)在点P,Q运动的过程中,在平面直角坐标系内是否存在点N,使以点A,P,Q,N为顶点的四边形是矩形?若存在,求直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,在平面直角坐标系中,A(1,a),B(b,1),其中a,b满足$\sqrt{2a-b-2}$+(a+b-7)2=0.
(1)求a,b的值;
(2)平移线段AB至CD,其中A,B的对应点分别为C,D.
①若CD所在的直线过O点,求将AB向下平移了多少个单位长度?
②如图2,若C,D两点的坐标分别为C(0,c),D(d,0),点P(m,1)是第二象限内一点,且m为整数,动点Q在线段DO上以1个单位/秒的速度从D出发向O运动,运到O点停止,若S△POQ=S△COP,且S四边形CDOP≥2S△COP,请求出点Q的运动时间.

查看答案和解析>>

同步练习册答案