精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,sin∠B=
1
2
,AD⊥BC于点D,∠DAC=45°,AC=10
2
,求线段BD的长.(结果保留根号)
分析:根据垂直可得∠ADB=∠ADC,然后在Rt△ACD中,利用∠DAC的余弦求出AD的长度,在Rt△ABD中,利用∠B的正弦求出AB的长度,再根据勾股定理列式求解即可得到BD的长短.
解答:解:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ACD中,∵∠DAC=45°,AC=10
2

∴AD=AC•cos45°=10
2
×
2
2
=10,
在Rt△ABD中,∵sin∠B=
AD
AB
=
1
2

∴AB=2AD=2×10=20,
∴BD=
AB2-AD2
=
202-102
=10
3
点评:本题考查了解直角三角形,勾股定理的应用,根据垂直得到直角三角形是解题的关键,解决此类题目要熟练掌握特殊角的三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案