精英家教网 > 初中数学 > 题目详情
(2012•黄陂区模拟)如图,D、E、F分别为等边△ABC中边BC、AC、AB的中点,M是BC边上一动点(不与D点重合).△EMG是等边三角形,连接CG、DG.下列结论:①S四边形AFME=
1
2
S△ABC; ②△FBM∽△MCG;③CG∥AB; ④DG=FM.其中结论正确的是(  )
分析:首先连接EF,DE,DF,由D、E、F分别为等边△ABC中边BC、AC、AB的中点,根据三角形中位线的性质,可得S四边形AFDE=
1
2
S△ABC,又由△DEF与△MEF等高等底,故S△DEF=S△MEF,即可得:①S四边形AFME=
1
2
S△ABC;易证得△EDC是等边三角形,然后可得△MED≌△GEC,即可判定∠BCG=∠ABC=60°,即可得CG∥AB;又由△FDM≌△DCG,可得DG=FM.
解答:解:连接EF,DE,DF,
∵D、E、F分别为等边△ABC中边BC、AC、AB的中点,
∴EF∥BC,DE∥AB,DF∥AC,EF=
1
2
BC,
∴△AEF∽△ACB,△EFD∽△BCA,
S△AEF
S△ABC
=(
EF
BC
)
2
=
1
4
S△DEF
S△ABC
=(
EF
BC
)
2
=
1
4

∴S四边形AFDE=
1
2
S△ABC
∵S△DEF=S△MEF
∴S四边形AFME=
1
2
S△ABC;故①正确;
∵△ABC与△EMG是等边三角形,
∴∠ECD=60°,EM=EG,AB=AC,
∴DE=EC=
1
2
AC,
∴△EDC是等边三角形,
∴∠DEC=60°,
∴∠MED+∠DEG=∠DEG+∠GEC=60°,
∴∠MED=∠GEC,
在△MED和△GEC中,
EM=EG
∠MED=∠GEC
ED=EC

∴△MED≌△GEC(SAS),
∴∠ECG=∠EDG=180°-∠EDC=120°,
∵∠ACB=60°,
∴∠BCG=∠ABC=60°,
∴CG∥AB;故③正确;
∵∠B=∠MCG=60°,
而∠BFM不一定等于∠CMG,
∴△FBM与△MCG不一定相似;故②错误;
∵△MED≌△GEC,
∴DM=GC,
∵DF∥AC,
∴∠FDM=∠ACB=60°,
∵CD=DE=DF,
在△FDM和△DCG中,
FD=DC
∠FDM=∠ACB
MD=GC

∴△FDM≌△DCG(SAS),
∴DG=FM;故④正确.
故选C.
点评:此题考查了等边三角形的性质、全等三角形的判定与性质、三角形中位线的性质以及相似三角形的判定.此题综合性很强,难度较大,解题的关键是掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图是一空心圆柱,其主视图正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)从只装有4个白球的袋中随机摸出一球,若摸到红球的概率是p1,摸到白球的概率是p2,则(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图,直线y=kx+b经过A(-1,3)、B(3,-1)两点,则不等式-
13
x<kx+b≤3
的解集为
-1≤x<3
-1≤x<3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图,函数y=
k
x
(x<0)
的图象与直线y=-
3
3
x
交于A点,将直线OA绕O点顺时针旋转30°,交函数y=
k
x
(x<0)
的图象于B点,若线段AB=3
2
-
6
,则k=
-3
3
-3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图,点B、C、D在一条直线上,AB⊥BC,ED⊥CD,∠1+∠2=90°.
求证:△ABC∽△CDE.

查看答案和解析>>

同步练习册答案