精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠C90°,以A为圆心,任意长为半径画弧,分别交ACAB于点MN,再分别以MN为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE3BE5,则AC的长为(  )

A.8B.7C.6D.5

【答案】C

【解析】

直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出ACAD,再利用勾股定理得出AC的长.

过点EEDAB于点D

由作图方法可得出AE是∠CAB的平分线,

ECACEDAB

ECED3

RtACERtADE中,

RtACERtADEHL),

ACAD

∵在RtEDB中,DE3BE5

BD4

ACx,则AB4+x

故在RtACB中,

AC2+BC2AB2

x2+82=(x+42

解得:x6

AC的长为:6

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l与坐标轴相交于点M(3,0),N(0,﹣4),反比例函数y=(x>0)的图象经过Rt△MON的外心A.

(1)求直线l的解析式;

(2)直接写出点A坐标及k值;

(3)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P,若△OMP的面积与△OBC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图所示直线y=kx+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,

(1)求一次函数的解析式.

(2)若AC是△PCB的中线,求反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BFDE相交于点G,连接CGBD相交于点H.给出如下几个结论:

①∠ADE=DBF;②△DAE≌△BDG;③若AF=2DF,则BG=6GF;CGBD一定不垂直;⑤∠BGE=60°.其中正确的结论个数为(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰与等腰,连接相交于点,交于点,交与点.下列结论:①;②;③平分;④若,则.其中一定正确的结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一种动画程序,在平面直角坐标系屏幕上,直角三角形是黑色区域(含直角三角形边界),其中A11),B21),C13),用信号枪沿直线y3x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是(  )

A.5≤b≤0B.5b≤3C.5≤b≤3D.5≤b≤5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,ACE,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AGCD于点H,若∠C=120°,则∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角中,的平分线交于点.

1)求证:

2)若的外角平分线以及的平分线交于点,(1)结论是否成立?请在图中补全图形,写出结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(m+3)xm+1=0.

(1)求证:无论m取何值,原方程总有两个不相等的实数根

(2)x1x2是原方程的两根,且|x1x2|=2,求m的值.

查看答案和解析>>

同步练习册答案