精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,二次函数)的图象与轴正半轴交于A点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.
(1)证明见解析;(2);(3)

试题分析:(1)根据二次函数与一元二次方程的关系,要证明二次函数的图象与x轴有两个交点,只要对应的一元二次方程根的判别式大于0即可.
(2)求出直线AB的解析式,根据平移的性质即可得直线l的解析式.
(3)求出点M关于x轴的对称点所在的二次函数解析式,由其在直线l的下方求出m的取值范围.
试题解析:(1)令,则
.
∵二次函数图象与y轴正半轴交于A点,
,且.
,∴.
.
∴该二次函数的图象与x轴必有两个交点.
(2)令,解得:
由(1)得,故B的坐标为(1,0).
又因为∠ABO=45°,所以,即.
则可求得直线AB的解析式为.
再向下平移2个单位可得到直线
(3)由(2)得二次函数的解析式为
∵M(p,q)为二次函数图象上的一个动点,
.
∴点M关于x轴的对称点的坐标为.
∴点在二次函数上.
∵当时,点M关于x轴的对称点都在直线l的下方,
时,;当时,.
结合图象可知:
解得:.
的取值范围为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.
(1)抛物线y=x2对应的碟宽为   ;抛物线y=4x2对应的碟宽为   ;抛物线y=ax2(a>0)对应的碟宽为  ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为  
(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn=  ,Fn的碟宽有端点横坐标为 2 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明动手做了一个质地均匀、六个面完全相同的正方体,,分别标有整数-2、-1、0、1、2、3,且每个面和它所相对的面的数字之和均相等,小明向上抛掷该正方体,落地后正方体正面朝上数字作为为点的横坐标,将它所对的面的数字作为点的纵坐标,则点落在抛物线轴所围成的区域内(不含边界)的概率是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(  )
A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a﹣b+c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的顶点坐标为          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当-2≤x≤l时,二次函数有最大值4,则实数m的值为(  )
(A)     (B)   (c)2或  (D)2或

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面说法错误的是(  )
A.直线y=x就是一、三象限的角平分线
B.反比例函数y=
2
x
的图象经过点(1,2)
C.函数y=3x-10中,y随x的增大而减小
D.抛物线y=x2-2x+1的对称轴是x=1

查看答案和解析>>

同步练习册答案