【题目】如图,在平面直角坐标系中,直线y=与抛物线y=+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
【答案】(1);(2)①l=;当x=﹣3时,最大值为15;②(,2),(,2),(,).
【解析】
试题分析:(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;
(2)①利用直线解析式和抛物线解析式表示出PD,再利用同角的余角相等求出∠DPE=∠BAO,根据直线k值求出∠BAO的正弦和余弦值,然后表示出PE、DE,再根据三角形的周长公式列式整理即可得解,再根据二次函数的最值问题解答;
②分(i)点G在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可得AP=AG,∠PAG=90°,再求出∠PAH=∠AGO,然后利用“角角边”证明△APH和△GAO全等,根据全等三角形对应边相等可得PH=AO=2,然后利用二次函数解析式求解即可;(ii)点F在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,根据正方形的性质可得AP=FP,∠APF=90°,再根据同角的余角相等求出∠APM=∠FPN,然后利用“角边角”证明△APM和△FPN全等,根据全等三角形对应边相等可得PM=PN,从而得到点P的横坐标与纵坐标相等,再根据二次函数的解析式求解即可.
试题解析:(1)令y=0,则=0,解得x=2,
x=﹣8时,y==,
∴点A(2,0),B(﹣8,),
把点A、B代入抛物线得,,解得,
所以,该抛物线的解析式;
(2)①∵点P在抛物线上,点D在直线上,
∴PD=﹣()=,
∵PE⊥AB,
∴∠DPE+∠PDE=90°,
又∵PD⊥x轴,
∴∠BAO+∠PDE=90°,
∴∠DPE=∠BAO,
∵直线解析式k=,
∴sin∠BAO=,cos∠BAO=,
∴PE=PDcos∠DPE=PD,
DE=PDsin∠DPE=PD,
∴△PDE的周长为l=PD+PD+PD=PD=()=,
即l=;
∵l=,
∴当x=﹣3时,最大值为15;
②∵点A(2,0),
∴AO=2,
分(i)点G在y轴上时,过点P作PH⊥x轴于H,
在正方形APFG中,AP=AG,∠PAG=90°,
∵∠PAH+∠OAG=90°,∠AGO+∠OAG=90°,
∴∠PAH=∠AGO,
在△APH和△GAO中,
∠PAH=∠AGO,∠AHP=∠GOA=90°,AP=AG,
∴△APH≌△GAO(AAS),
∴PH=AO=2,
∴点P的纵坐标为2,
∴=2,
整理得,+3x﹣2=0,
解得x=,
∴点(,2),(,2);
(ii)点F在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,
在正方形APFG中,AP=FP,∠APF=90°,
∵∠APM+∠MPF=90°,∠FPN+∠MPF=90°,
∴∠APM=∠FPN,
在△APM和△FPN中,
∠APM=∠FPN,∠AMP=∠FNP=90°,AP=AF,
∴△APM≌△FPN(AAS),
∴PM=PN,
∴点P的横坐标与纵坐标相等,
∴=x,
整理得,+7x﹣10=0,
解得=,=(舍去),
∴点(,),
综上所述,存在点(,2),(,2),(,).
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,O为边AB上的一点,以O为圆心,以OA为半径,作⊙O,交AB于点D,交AC于点E,交BC于点F,且点F恰好是ED的中点,连接DF.
(1)求证:BC是⊙O的切线;
(2)若⊙O的直径为10,AE=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;②;③=PHPB;④tan∠DBE=.其中正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=+4x+6.
(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标,并在下面的网格中画出这个函数的大致图象;
(2)利用函数图象回答:
①当x在什么范围内时,y随x的增大而增大?当x在什么范围内时,y随x的增大而减小?
②当x在什么范围内时,y>0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm,
(1)请判断DE与⊙O的位置关系,并说明理由;
(2)求图中阴影部分的面积(结果用π表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com