精英家教网 > 初中数学 > 题目详情
12.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=10cm,AC=6cm,则BE的长为2cm.

分析 首先连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.

解答 解:如图,连接CD,BD,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
$\left\{\begin{array}{l}{CD=BD}\\{DF=DE}\end{array}\right.$,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=10cm,AC=6cm,
∴BE=2cm.
故答案为:2cm.

点评 此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB于点F;过D作⊙O的切线,交CA延长线于点E.
(1)求证:AB∥DE;
(2)写出AC、CD、BC之间的数量关系AC+BC=$\sqrt{2}$CD,并加以证明.
(3)若tan∠B=$\frac{1}{2}$,DF=5$\sqrt{2}$,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,一次函数y=-$\frac{1}{2}$x+a(a>0)的图象与坐标轴交于A,B两点,以坐标原点O为圆心,半径为2的⊙O与直线AB相离,则a的取值范围是a>$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.a,b,c在数轴上的位置如图所示,化简:|a+b|-2|a-c|=a-b-2c.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知(a-3)2+|b-2|=0,c和d互为倒数,m与n互为相反数,y为最大的负整数,求(y+b)2+m(a+cd)+nb2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一个三位数,个位数字是a,十位数字是b,百位数字是3,则这个三位数是(  )
A.3abB.a+10b+300C.100a+10b+3D.a+b+3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.根据“二十四点”游戏规则,3,4,2,7每个数只能用一次,用有理数的混合运算(加、减、乘、除、乘方)写出一个算式使其结果等于24(必须包含4个数字)23×(7-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,CD=3,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,?ABCD的一边AB为直径的⊙O过点C,若∠AOC=70°,则∠BAD等于(  )
A.145°B.140°C.135°D.130°

查看答案和解析>>

同步练习册答案