精英家教网 > 初中数学 > 题目详情
如图:AB=AD,∠ABC=∠ADC,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:CE=CF.
分析:连接BD,根据等腰三角形的性质和判定求出BC=DC,根据HL证Rt△BCERt≌Rt△DCF,即可得出答案.
解答:证明:连接BD,
∵AB=AC,
∴∠ABD=∠ADB,
又∵∠ABC=∠ADC,
∴∠ABC-∠ABD=∠ADC-∠ADB,
∴∠DBC=∠BDC,
∴BC=CD,
在Rt△BCE和Rt△DCF中,
BC=CD
BE=DF

∴Rt△BCERt≌Rt△DCF(HL),
∴EC=CF.
点评:本题考查了等腰三角形的性质和判定,三角形全等的判定和性质的应用,注意:全等三角形的对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB=AD,BC=CD,AC,BD相交于E,如果不再添加辅助线,不再标注其他字母,你能找出几对全等的三角形?就其中一对三角形全等给出完整的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,AB=AD,∠B=∠D,∠BAC=∠DAE,AC与AE相等吗?
小明的思考过程如下:
AB=AD
∠B=∠D
△ABC≌△ADE
AC=AE
∠BAC=∠DAE
说明每一步的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,AB=AD,BE=DE,∠1=∠2,则图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AD,CB=CD,E、F分别是AB、AD的中点.求证:CE=CF.

查看答案和解析>>

同步练习册答案