精英家教网 > 初中数学 > 题目详情

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.

【小题1】求抛物线的解析式
【小题2】若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标
【小题3】P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.


【小题1】y=x2+2x
【小题2】D1(1,3),D2(﹣3,3),(﹣1,﹣1); 
【小题3】存在,()或(3,15)

解析解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(﹣2,0),B(﹣3,3),O(0,0),可得
, 解得.
∴抛物线的解析式为y=x2+2x;
(2)①当AE为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,则D在x轴方不可能,
∴D在x轴上方且DE=2,
∴D1(1,3),D2(﹣3,3);
②当AO为对角线时,则DE与AO互相平分,
因为点E在对称轴上,且线段AO的中点横坐标为﹣1,
由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)
故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1);
(3)存在,
∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2.∴△BOC是直角三角形.

假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则,即 x+2=3(x2+2x)
得:x1=,x2=﹣2(舍去).
当x=时,y=,即P().
②若△PMA∽△BOC,则,即:x2+2x=3(x+2)
得:x1=3,x2=﹣2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P()或(3,15).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-精英家教网2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E,
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)当m=2时,点Q为平移后的抛物线的一动点,是否存在这样的⊙Q,使得⊙Q与两坐标轴都相切?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上的另一点E,顶点为M(2,4),矩形ABCD的顶点A与O重合,AD,AB分别在x,y轴上,且AD=2,AB=3.
(1)求该抛物线对应的函数解析式;
(2)现将矩形ABCD以每秒1个单位长度的速度从左图所示位置沿x轴的正方向匀速平行移动;同时AB上一动点P也以相同的速度从点A出发向B匀速运动,设它们的运动时间为t秒(0≤t≤3),直线AB与抛物线的交点为N,设多边形PNCD的面积为S,试探究S是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案