精英家教网 > 初中数学 > 题目详情
 如图:在直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与轴相交于B、C两点,与轴相交于D、E两点.
【小题1】若抛物线经过C、D两点,求此抛物线的解析式,并判断点B是否在这条抛物线上?(5分)
【小题2】过点E的直线轴于F(,0),求此直线的解析式,这条直线是⊙A的切线吗?请说明理由;(5分)
【小题3】探索:是否能在(1)中的抛物线上找到一点Q,使直线BQ与轴正方向所夹锐角的正切值等于?,若能,请直接写出Q点坐标;若不能,请说明理由. (4分)

【小题1】连接AE(1分)
依题意:OD="OE=4" ∴C、D两点坐标为:C(8,0),D(0,-4)(2分)
把C、D两点坐标代入中,
得:  解得:
∴所求二次函数为: (4分)
∵B点坐标为(-2,0)
∴当时, ∴点B在这条抛物线上(5分)
【小题2】依题意:m ="4" ∴ 
把点F(,0)代入上式得:
∴所求一次函数为:(7分)
在Rt△OEF中,(8分)
在△AEF中,AF=3+   ∴ 
 (9分)
∴∠AEF=90º ∴EF是⊙O的切线(10分)
【小题3】能找到这样的点Q,
其坐标分别为:)(12分)和()(14分)解析:
(1)据圆的圆心坐标A(3,0),以及圆的半径,可求出C点的坐标C(8,0),B点的坐标B(-2,0),然后由勾股定理,求出D点的坐标(0,-4),将C,D坐标代入抛物线的解析式中,即可求得抛物线的解析式.将B点代入,即可判断是否在抛物线上;
(2)利用两点式求出直线的解析式,然后再利用勾股定理证出∠AEF=90º,从而得出结论;
(3)利用直线BQ与轴正方向所夹锐角的正切值等于,得出BQ直线的k值为±,根据点斜式求出直线的解析式,再求它与圆的交点。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案