精英家教网 > 初中数学 > 题目详情

如图,找出图中∠DEA,∠ADE的同位角、内错角和同旁内角.

解:图中∠DEA的同位角为∠C、内错角为∠BDE、同旁内角为∠A或∠ADE;
∠ADE的同位角为∠B、内错角为∠CED、同旁内角为∠AED或∠A.
分析:根据同位角、内错角、同旁内角的概念.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.
点评:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题:
(1)找出一个等腰三角形;(不包括△ABC)
(2)找出三对相似三角形;(不包括全等三角形)
(3)找出两对全等三角形,并选出一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.
(1)当直线MN绕着点C旋转到如图所示的位置时,
求证:①△ADC≌△CEB;     ②DE=AD+BE
(2)当直线MN绕着点C旋转到如图所示的位置时,①找出图中一对全等三角形;②DE、AD、BE之间有怎样的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•江苏模拟)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离等于
25
25

(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;
(4)连接PG,当PG∥AB时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,点E是射线DA一动点(DE>1),连结BE,以BE为边在BE上方作正方形BEFG,设M为正方形BEFG的中心,如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图中的一个损矩形并简单说明理由.
(2)连接AM,无论点E位置怎样变化,求证:DB∥AM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离等于______;
(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;
(4)连接PG,当PG∥AB时,直接写出t的值.

查看答案和解析>>

同步练习册答案