精英家教网 > 初中数学 > 题目详情

【题目】如图,点E是正方形ABCD内的一点,点BC边的下方,连接AE,BE,CE,,且,则 ______

【答案】135

【解析】

先由全等三角形的性质证明EBE是等腰直角直角三角形,进而得出BEE′=∠BEE=45°,由勾股定理求出EE2的值,再勾股定理的逆定理证得EEC是直角三角形,从而∠EEC=90°,即可得出答案.

连接EE′.

∵△ABE≌△CBE′,

∴∠ABE=∠CBE′,

四边形ABCD是正方形,

∴∠ABC=90°,

∴∠EBE′=90°,

∴△EBE是直角三角形,

∵△ABE≌△CBE′,

BE=BE′=2,∠AEB=∠BEC

∴∠BEE′=∠BEE=45°,

EE2=22+22=8,AE=CE′=1,EC=3,

EC2=EC2+EE2

∴△EEC是直角三角形,

∴∠EEC=90°,

∴∠AEB=135°,

故答案为:135.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):

①接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?

②若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?

③若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CBABC=90°FAB延长线上一点,点EBC上,且AE=CF

1)求证:ABE≌△CBF

2)若CAE=30°,求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)小明总共剪开了_______条棱.

(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.

(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,厘米,厘米,点DAB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当全等时,v的值为  

A. B. 3 C. 3 D. 15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第(  )秒

A. 80 B. 105 C. 120 D. 150

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一副三角尺的直角顶点重合在一起.

(1)若 OB ∠DOC 的角平分线,求∠AOD 的补角的度数是多少?

(2)若 ∠COB ∠DOA 的比是 2:7,求 ∠BOC 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDDEFG都是正方形,ABCG交于点下列结论:其中正确的有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为(  )

A.25
B.18
C.9
D.9

查看答案和解析>>

同步练习册答案