分析 设BM=x米.由等腰直角三角形的性质知,CF=DF=x,得EN=FB=BC-CF=6-x,AN=AB-DF-ED=7-x,则在直角三角形ANE中,有EN=AN•tan30°,建立方程求得x的值.
解答 解:设BM=x米.
∵∠CDF=45°,∠CFD=90°,
∴CF=DF=x米,
∴BF=BC-CF=(6-x)米.
∴EN=DM=BF=(6-x)米.
∵AB=9米,DE=2米,BM=DF=x米,
∴AN=AB-MN-BM=(7-x)米.
在△AEN中,∠ANE=90°,∠EAN=30°,
∴EN=AN•tan30°.
即6-x=$\frac{\sqrt{3}}{3}$(7-x).
解这个方程得:x=$\frac{18-7\sqrt{3}}{3-\sqrt{3}}$≈4.6.
答:DM和BC的水平距离BM的长度约为4.6米.
点评 此题主要考查了解直角三角形的应用,本题通过设适当的参数,利用直角三角形的边角关系建立方程而求解是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10,6 | B. | 15,9 | C. | 5,3 | D. | 20,12 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 1±$\sqrt{3}$ | C. | 5或1-$\sqrt{3}$ | D. | 5或1±$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.86×108 | B. | 8.6×103 | C. | 8.6×107 | D. | 86×102 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1<y2<y3 | B. | y1<y3<y2 | C. | y3<y1<y2 | D. | y3=y1<y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com