精英家教网 > 初中数学 > 题目详情
14.如图,将一张长方形纸片ABCD如图(1)折叠,使AD边落在AB边上,折痕为AE,如图(2):再将∠A折叠,使点A与点B重合,折痕为MN,如图(3).如果AD=6cm,MD=1cm,那么长方形ABCD原来的长AB=10cm.

分析 利用折叠的性质,可得BM=$\frac{1}{2}$AB=$\frac{1}{2}$(AD+BD)=BD+MD,由此代入数值即可求得BD的长,继而求得答案.

解答 解:由折叠可知:BM=$\frac{1}{2}$AB=$\frac{1}{2}$(AD+BD)=BD+MD,
又∵AD=6cm,MD=1cm,
∴$\frac{1}{2}$(6+BD)=BD+1,
解得:BD=4cm,
∴AB=AD+BD=10cm.
故答案为:10.

点评 此题考查了折叠的性质以及矩形的性质.注意得到BM=$\frac{1}{2}$AB=$\frac{1}{2}$(AD+BD)=BD+MD是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解不等式组$\left\{\begin{array}{l}3x-3≥x-7\\ \frac{2x+4}{3}<3-x\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.用四舍五入法对数10.2603精确到千分位取近似数,得10.2603≈10.260.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.方程2x2-3x-1=0用公式法求解,先确定a,b,c的值,正确的是(  )
A.a=2,b=-3,c=-1B.a=-2,b=3,c=1C.a=-2,b=-3,c=-1D.a=2,b=3,c=-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若反比例函数y=$\frac{k}{x}$的图象经过点A(-3,4)和点B(2,a)两点,则a=-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=12cm,水面最深地方的高度为2cm,求这个圆形截面所在圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列二次根式中,最简二次根式是(  )
A.$\sqrt{8}$B.$\sqrt{0.3}$C.$\sqrt{2}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列代数式书写规范的是(  )
A.1$\frac{1}{6}$aB.a×5C.a÷bD.$\frac{1}{3}ab$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.观察下表:
序号123

图形
x x
y
x x
y
x  x
x   x  x
y  y
x   x   x
y  y
x  x  x

x x x x
y y y
x x  x x
y y y
x x x x
我们把某格中字母的和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y.回答下列问题:
(1)第2格的“特征多项式”为9x+4y,第3格的“特征多项式”为12x+6y;
(2)写出第5格的“特征多项式”与第6格的“特征多项式”,并求出第5格与第6格
“特征多项式”的差.
(3)试写出第n格的“特征多项式”.

查看答案和解析>>

同步练习册答案