精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在△ABC中,D是AB边上的一点,BD>AD,∠A=∠ACD,
(1)若AC=BC,△ACD的周长是7厘米,且
CD
CB
=
2
3
,求AB的长;
(2)过D作∠CDB的平分线DF交CB于F,若线段AC沿着AB方向平移,当点A移到点D时,判断线段AC的中点E能否移到线段DF上,并说明理由.
分析:(1)根据
CD
CB
=
2
3
,及AC=CB,AD=CD,可求得AD=CD=2cm,AC=3cm,又因为∠A=∠B,可判断△ACB∽△ADC,根据相似三角形的对应边之比相等,可得出AB=4.5cm.
(2)要判断线段AC的中点E能否移到线段DF上,只要判断出DF∥AC,则中点E就能移到线段DF上.
解答:解:(1)∵
CD
CB
=
2
3
,AC=CB,∴AC=
3
2
CD

又∵∠A=∠ACD,∴AD=DC,
由△ACD的周长是7厘米,可解得AD=DC=2cm,AC=3cm,
∵AC=CB,∴∠A=∠B,∴∠ADC=∠ACB,
△ACB∽△ADC,
AC
AB
=
AD
BC
,解得AB=4.5cm.

(2)∵DF是∠CDB的平分线,∴∠CDF=∠BDF,
又∵∠CDB=∠A+∠ACD,∠A=∠ACD,
∴∠CDB=2∠A=2∠BDF,
∴∠A=∠BDF,
∴DF∥AC,
∴线段AC沿着AB方向平移,当点A移到点D时,线段AC的中点E能移到线段DF上.
点评:本题考查了等腰三角形的性质及角平分线的性质;熟练掌握这些知识是解答问题的前提.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案