精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限抛物线上一点,且∠DAP=45°,则点P的坐标为______

【答案】

【解析】

如图所示构造△AKD全等△DNM,先求得点A和点D的坐标,从而可求得点M的坐标,最后求得直线AM的坐标即可.

如图所示:构造△AKD≌△DNM,连接AM

y=0代入抛物线的解析式得:-x2+2x+3=0

解得:x1=3x2=-1

∴点A的坐标为(-10).

∴点D的横坐标为1

x=1代入抛物线的解析式得y=4

AK=4KD=2,∴DN=4NM=2

∴点M的坐标为(52).

设直线AM的解析式y=kx+b.将点A、点M的解析式代入得:

解得:

∴直线AM的解析式为y=x+

y=x+y=-x2+2x+3联立.

解得:x=y=x=-1y=0(舍去).

∴点P的坐标为().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y1=ax2+bx+ca≠0)和一次函数y2=kx+nk≠0)的图象如图所示,下面有四个推断:

①二次函数y1有最大值;

②二次函数y1的图象关于直线x=﹣1对称

③当x=﹣2时,二次函数y1的值大于0

④过动点Pm0)且垂直于x轴的直线与y1y2的图象的交点分别为CD,当点C位于点D上方时,m的取值范围是m﹣3m﹣1

以上推断正确的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒.连接MN.

(1)求直线BC的解析式;

(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;

(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,CB,CD分别切⊙O于点B,D,CDBA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F。

(1)求证:∠FEB=∠ECF

(2)BC= 12, DE=8 EA的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E在BC上,且CE=BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=S四边形ABCF;④∠AFE=90°.其中正确结论的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点Am3),B-6n),与x轴交于点C

1)求直线y=kx+b(k≠0)的解析式;

2)若点Px轴上,且SACP=SBOC,求点P的坐标(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,BC与 B′C′交于点P,此时∠BPB′=25°,则∠CAB的大小为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知二次函数yax2bx+3的图像经过点A(1,0),B(-2,3).

(1)求该二次函数的表达式

(2)求该二次函数的最大值

(3)结合图像解答问题y>3x的取值范围是

查看答案和解析>>

同步练习册答案