精英家教网 > 初中数学 > 题目详情

如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

解:(1)C(3,0);

(2)①抛物线y=ax2+bx+c,
令x=0,则y=c,
∴A点坐标(0,c).
∵b2=2ac,
=
∴点P的坐标为().
∵PD⊥x轴于D,∴点D的坐标为(,0).
根据题意,得a=a′,c=c′,
∴抛物线F′的解析式为y=ax2+b'x+c.
又∵抛物线F′经过点D(,0),
∴0=
∴0=b2-2bb'+4ac.
又∵b2=2ac,
∴0=3b2-2bb'.
∴b:b′=2:3.
②由①得,抛物线F′为y=ax2+bx+c.
令y=0,则ax2+bx+c=0.
∴x1=,x2=
∵点D的横坐标为
∴点C的坐标为(,0).
设直线OP的解析式为y=kx.
∵点P的坐标为(),
=k,
∴k=
∴y=-x.
∵点B是抛物线F与直线OP的交点,
∴ax2+bx+c=-x.
∴x1=,x2=
∵点P的横坐标为
∴点B的横坐标为
把x=代入y=-x,
得y=-)=
∴点B的坐标为(,c).
∴BC∥OA,AB∥OC.(或BC∥OA,BC=OA),
∴四边形OABC是平行四边形.
又∵∠AOC=90°,
∴四边形OABC是矩形.
分析:(1)由于抛物线F′由抛物线F平移所得,开口方向和开口大小都无变化,因此a=a′=1;由于两条抛物线都与y轴交于A点,那么c=c′=3.然后可根据抛物线F的坐标求出其顶点坐标,即可得出D点的坐标,然后将D的坐标代入抛物线F′中,即可求出抛物线F′的解析式,进而可求出C点的坐标.
(2)①与(1)的方法类似,在求出D的坐标后,将D的坐标代入抛物线F′中,即可得出关于b,b′的关系式即可得出b,b′的比例关系.
②探究四边形OABC的形状,无非是平行四边形,菱形,矩形这几种.那么首先要证的是四边形OABC是个平行四边形,已知了OA∥BC,只需看A,B的纵坐标是否相等,即OA是否与BC的长相等.根据抛物线F的解析式可求出P点的坐标,然后用待定系数法可求出OP所在直线的解析式.进而可求出抛物线F与直线OP的交点B的坐标,然后判断B的纵坐标是否与A点相同,如果相同,则四边形OABC是矩形(∠AOC=90°),如果B,A点的纵坐标不相等,那么四边形AOCB是个直角梯形.
点评:本题着重考查了待定系数法求二次函数的性质、函数的平移变换、探究矩形的构成情况等重要知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案