精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号).
【答案】分析:(1)设抛物线的一般式,将O、A、B三点坐标代入解析式,解方程组即可;
(2)存在这样的点P,设满足条件的切线l与x轴交于点B,与⊙M相切于点C,连接MC,过C作CD⊥x轴于D,在Rt△BMC中,CM为半径,∠CBM=30°,可求BM,从而可求B点坐标,在Rt△CDM中,∠CMD=60°,CM为半径,可求CD、DM,OD=OM--DM,可确定C点坐标,根据“两点法”求直线BC解析式,联立直线解析式、抛物线解析式,解方程组可求P点坐标,根据图形的对称性求另外两点坐标.
解答:解:(1)设抛物线的解析式为:y=ax2+bx+c(a≠0)
由题意得:(1分)
解得:(2分)
∴抛物线的解析式为:(3分)

(2)存在(4分)
抛物线的顶点坐标是,作抛物线和⊙M(如图),
设满足条件的切线l与x轴交于点B,与⊙M相切于点C
连接MC,过C作CD⊥x轴于D
∵MC=OM=2,∠CBM=30°,CM⊥BC
∴∠BCM=90°,∠BMC=60°,BM=2CM=4,
∴B(-2,0)
在Rt△CDM中,∠DCM=∠CDM-∠CMD=30°
∴DM=1,CD==∴C(1,
设切线l的解析式为:y=kx+b(k≠0),点B、C在l上,
可得:
解得:
∴切线BC的解析式为:
∵点P为抛物线与切线的交点,

解得:
∴点P的坐标为:
∵抛物线的对称轴是直线x=2
此抛物线、⊙M都与直线x=2成轴对称图形
于是作切线l关于直线x=2的对称直线l′(如图)
得到B、C关于直线x=2的对称点B1、C1
直线l′满足题中要求,由对称性,
得到P1、P2关于直线x=2的对称点:即为所求的点;
∴这样的点P共有4个:
点评:本题考查了抛物线、直线解析式的求法,圆的切线的性质,30°直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案