精英家教网 > 初中数学 > 题目详情

若二次函数 (a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是

A.a>0 B.b2-4ac≥0
C.x1<x0<x2 D.a(x0-x1)( x0-x2)<0

D

解析试题分析:a的符号不能确定,选项A错误。
二次函数 (a≠0)的图象与x轴有两个交点,故b2-4ac>0。选项B错误。
分a>0,a<0两种情况画出两个草图来分析(见下图):

由于a的符号不能确定(可正可负,即抛物线的开口可向上,也可向下),所以x0,x1, x2的大小就无法确定。选项C错误。
在图1中,a<0且有x0<x1< x2(或x1< x2< x0),则a(x0-x1)( x0-x2)<0;在图2中a>0,且有x1< x0< x2,则a(x0-x1)( x0-x2)<0.。选项C正确。
故选D。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:单选题

若二次函数的图象与x轴有两个交点,坐标分别为(,0),(,0),且,图象上有一点M()在x轴下方,则下列判断中正确的是(    ).

A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是(     )

A.二次函数图像与x轴交点有两个 
B.x≥2时y随x的增大而增大 
C.二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间 
D.对称轴为直线x=1.5 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

将抛物线-1的图像向左平移2个单位,再向上平移1个单位,所得抛物线         .

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

二次函数的图象的顶点坐标是【   】

A.(1,3) B.(,3) C.(1,D.(

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(-2,0)。则下列结论中,正确的是【   】

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

(2013年四川广安3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:
①abc>0,②2a+b=O,③b2﹣4ac<0,④4a+2b+c>0其中正确的是【   】

A.①③ B.只有② C.②④ D.③④

查看答案和解析>>

同步练习册答案