精英家教网 > 初中数学 > 题目详情
3.如图,∠3=∠4,AE=AD,∠1=∠2.求证:AC=AB.

分析 求出∠BAD=∠CAE,再利用“角角边”证明△ABD和△ACE全等,根据全等三角形对应边相等证明即可.

解答 证明:∵∠1=∠2,
∴∠1+∠BAC=∠2+∠BAC,
即∠BAD=∠CAE,
在△ABD和△ACE中,$\left\{\begin{array}{l}{∠BAD=∠CAE}\\{∠3=∠4}\\{AE=AD}\end{array}\right.$,
∴△ABD≌△ACE(AAS),
∴AC=AB.

点评 本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键,难点在于求出∠BAD=∠CAE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.若|a-2|+b2+4b+4+$\sqrt{{c}^{2}-c+\frac{1}{4}}$=0,则$\sqrt{{b}^{2}}$•$\sqrt{a}$•$\sqrt{c}$的值是(  )
A.4B.2C.-2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,将正方形ABCD沿直线MN折叠,使B点落在CD边上,AB边折叠后与AD边交于F,若三角形DEF与三角形ECM的周长差为3,则DE的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(-1,0)两点,与y轴交于点C.
(1)求抛物线的解析式,并写出其对称轴;
(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.甲、乙两班学生到集市上购买苹果,苹果的价格如表:
所购苹果数量不超过30千克30千克以上但不超过50千克50千克以上
每千克价格3元2.5元2元
甲班分两次购买60千克(第二次多于第一次),而乙班一次购买苹果60千克.
(1)若甲班第一次购买28千克,第二次购买32千克,则乙班比甲班少付多少元?
(2)若甲班两次共付费163元,则甲班第一次、第二次分别购买苹果多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.请确定下列函数的开口方向、对称轴及顶点坐标、最大值或最小值,并研究其增减性.
(1)y=x2+x-2(-1<x<2)
∴抛物线开口方向上,对称轴x=-$\frac{1}{2}$,顶点坐标(-$\frac{1}{2}$,$\frac{9}{4}$),当x=-$\frac{1}{2}$时,函数有最值是-$\frac{9}{4}$,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大.
(2)y=$\frac{1}{2}{x}^{2}$-4x+8
∴抛物线开口方向上,对称轴x=4,顶点坐标(4,0),当x=4时,函数有最值是0,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.将两个全等的直角三角形,拼成一个四边形.那么这些图形中有4个轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.配方法解一元二次方程ax2+bx-c=0(a≠0,c>0)得到(x-c)2=4c2,从而解得方程一根为1,则a-3b=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,△AOB的边OA在x轴上,点B在第一象限,∠BAO=45°,AB=12$\sqrt{2}$,点A的坐标为(17,0).
(1)求点B的坐标;
(2)若D为线段OB的中点,E为y轴上一点,直线DE交AB于点C,交x轴于点F,其中OE=$\frac{7}{2}$,连接AD,求直线DE的解析式及四边形OACD的面积;
(3)若点P是直角坐标平面上的一个动点,是否存在点P,使以A、D、P为顶点的三角形是以AD为直角边的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案