精英家教网 > 初中数学 > 题目详情
如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线.

【答案】分析:求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证.
解答:证明:连接PD,DQ,
由已知∠PAC=120°,∠QCA=120°,
∴△PAC∽△AMC,△AMC∽△ACQ.

∴AC2=PA•QC,又AC=AD=DC.
,又∠PAD=∠DCQ=60°,
∴△PAD∽△DCQ,∴∠APD=∠CDQ.
∴∠PDA+∠ADC+∠CDQ=180°,
∴P,D,Q三点共线.
点评:本题是证明三点共线的问题,这类题目可以转化为求证平角的问题.并且本题利用相似三角形的性质,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的
EF
上,求
BC
的长度及扇形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,点B、C分别在DE、EF.(B、C分别不与E、F重合)
(1)如图1,当AE平分∠BAC时,
①求证:BD=CF;
②当AD=AB时,求∠ABD的度数;
(2)如图2,当AE不平分∠BAC时,若△ADB是一个等腰三角形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD边长为6
3
,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD为2cm.B、C两点在以点A为圆心的
EF
上,求
BC
的长度及扇形ABC的面积.(结果保留π)

查看答案和解析>>

同步练习册答案